Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells

Abstract

The disparate pH requirements for borohydride oxidation and peroxide reduction in direct borohydride fuel cells (DBFCs) currently hinder their performance and efficiency. Here we develop a pH-gradient-enabled microscale bipolar interface (PMBI) that facilitates sharply different local pH environments at the anode and cathode of a DBFC. Using a recessed planar electrode in conjunction with transmission electron microscopy, we show that the PMBI maintained a sharp local pH gradient (0.82 pH units nm–1 on average) at the electrocatalytic reaction site. The PMBI configuration enabled enhanced performance in a DBFC compared with either all-anion- or all-cation-exchange configurations (330 mA cm–2 at 1.5 V and a peak power density of 630 mW cm–2 at 1.0 V, respectively). The high power densities obtained at voltages well above 1.0 V—achieved by virtue of the effective separation of anolyte and catholyte locally at the electrocatalytically active sites by the PMBI—provide a pathway to reduce fuel cell stack size for autonomous propulsion applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scheme for the RPE system designed to simulate a PMBI.
Fig. 2: Evidence for strong and localized pH gradients.
Fig. 3: General scheme of the PMBI.
Fig. 4: Characterization of the PMBI.
Fig. 5: Impact of the interface on device performance.
Fig. 6: Comparison of DBFC and PEMFC.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author on reasonable request.

References

  1. Wang, Z., Parrondo, J. & Ramani, V. Anion exchange membranes based on polystyrene-block-poly(ethylene-ran-butylene)-bock-polystyrene triblock copolymers: cation stability and fuel cell performance. J. Electrochem. Soc. 164, F1216–F1225 (2017).

    Article  Google Scholar 

  2. Parrondo, J., George, M., Capuano, C., Ayers, K. E. & Ramani, V. Pyrochlore electrocatalysts for efficientalkaline water electrolysis.J. Mater. Chem. A 3, 10819–10828 (2015).

    Article  Google Scholar 

  3. Mukerjee, S. & Srinivasan, S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J. Electroanal. Chem. 357, 201–224 (1993).

    Article  Google Scholar 

  4. Marini, S. et al. Advanced alkaline water electrolysis. Electrochim. Acta 82, 384–391 (2012).

    Article  Google Scholar 

  5. Raman, R. K. & Shukla, A. K. A direct borohydride/hydrogen peroxide fuel cell with reduced alkali crossover. Fuel Cells 7, 225–231 (2007).

    Article  Google Scholar 

  6. Ünlü, M., Zhou, J. & Kohl, P. A. Hybrid anion and proton exchange membrane fuel cells. J. Phys. Chem. C 113, 11416–11423 (2009).

    Article  Google Scholar 

  7. Olu, P.-Y., Job, N. & Chatenet, M. Evaluation of anode (electro)catalytic materials for the direct borohydride fuel cell: methods and benchmarks. J. Power Sources 327, 235–257 (2016).

    Article  Google Scholar 

  8. Milikić, J. et al. Pd/c-PANI electrocatalysts for direct borohydride fuel cells. Electrochim. Acta 213, 298–305 (2016).

    Article  Google Scholar 

  9. Liu, B. H., Li, Z. P., Arai, K. & Suda, S. Performance improvement of a micro borohydride fuel cell operating at ambient conditions. Electrochim. Acta 50, 3719–3725 (2005).

    Article  Google Scholar 

  10. Gyenge, E., Atwan, M. & Northwood, D. Electrocatalysis of borohydride oxidation on colloidal Pt and Pt-alloys (Pt-Ir, Pt-Ni, and Pt-Au) and application for direct borohydride fuel cell anodes. J. Electrochem. Soc. 153, A150–A158 (2006).

    Article  Google Scholar 

  11. Park, K. T., Jung, U. H., Jeong, S. U. & Kim, S. H. Influence of anode diffusion layer properties on performance of direct borohydride fuel cell. J. Power Sources 162, 192–197 (2006).

    Article  Google Scholar 

  12. Duteanu, N., Vlachogiannopoulos, G., ShivhareM. R., YuE. H. & Scott, K. A parametric study of a platinum ruthenium anode in a direct borohydride fuel cell. J. Appl. Electrochem. 37, 1085–1091 (2007).

    Article  Google Scholar 

  13. Coowar, F. A., Vitins, G., MepstedG. O.., Waring, S. C. & Horsfall, J. A. Electrochemical oxidation of borohydride at nano-gold-based electrodes: application in direct borohydride fuel cells. J. Power Sources 175, 317–324 (2008).

    Article  Google Scholar 

  14. Qu, C., Zhang, H., Zhang, F. & Liu, B. A high-performance anion exchange membrane based on bi-guanidinium bridged polysilsesquioxane for alkaline fuel cell application. J. Mater. Chem. 22, 8203–8207 (2012).

    Article  Google Scholar 

  15. Arges, C. G., Prabhakaran, V., Wang, L. & Ramani, V. Bipolar polymer electrolyte interfaces for hydrogen-oxygen and direct borohydride fuel cells. Int. J. Hydrogen Energy 39, 14312–14321 (2014).

    Article  Google Scholar 

  16. Liu, B. H., Li, Z. P. & Suda, S. Anodic oxidation of alkali borohydrides catalyzed by nickel. J. Electrochem. Soc. 150, A398–A402 (2003).

    Article  Google Scholar 

  17. Liu, B. H., Li, Z. P. & Suda, S. Electrocatalysts for the anodic oxidation of borohydrides. Electrochim. Acta 49, 3097–3105 (2004).

    Article  Google Scholar 

  18. Çelikkan, H., Şahin, M., Aksu, M. L. & Nejat Veziroğlu, T. The investigation of the electrooxidation of sodium borohydride on various metal electrodes in aqueous basic solutions. Int. J. Hydrogen Energy 32, 588–593 (2007).

    Article  Google Scholar 

  19. Chatenet, M., Micoud, F., Roche, I. & Chainet, E. Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte: Part I. BH4 electro-oxidation on Au and Ag catalysts. Electrochim. Acta 51, 5459–5467 (2006).

    Article  Google Scholar 

  20. Geng, X., Zhang, H., Ma, Y. & Zhong, H. Borohydride electrochemical oxidation on carbon-supported Pt-modified Au nanoparticles. J. Power Sources 195, 1583–1588 (2010).

    Article  Google Scholar 

  21. Finkelstein, D. A. et al. Self-poisoning during BH4 - oxidation at Pt and Au, and in situ poison removal procedures for BH4 - fuel cells. J. Phys. Chem. C 117, 1571–1581 (2013).

    Article  Google Scholar 

  22. Oliveira, V. L., Sibert, E., Soldo-Olivier, Y., Ticianelli, E. A. & Chatenet, M. Borohydride electrooxidation reaction on Pt(111) and Pt(111) modified by a pseudomorphic Pd monolayer. Electrochim. Acta 190, 790–796 (2016).

    Article  Google Scholar 

  23. Oliveira, V. L., Sibert, E., Soldo-Olivier, Y., Ticianelli, E. A. & Chatenet, M. Investigation of the electrochemical oxidation reaction of the borohydride anion in palladium layers on Pt(111). Electrochim. Acta 209, 360–368 (2016).

    Article  Google Scholar 

  24. Braesch, G., Bonnefont, A., Martin, V., Savinova, E. R. & Chatenet, M. Borohydride oxidation reaction mechanisms and poisoning effects on Au, Pt and Pd bulk electrodes: from model (low) to direct borohydride fuel cell operating (high) concentrations. Electrochim. Acta 273, 483–494 (2018).

    Article  Google Scholar 

  25. Olu, P.-Y. et al. Influence of the concentration of borohydride towards hydrogen production and escape for borohydride oxidation reaction on Pt and Au electrodes – experimental and modelling insights. J. Power Sources 375, 300–309 (2018).

    Article  Google Scholar 

  26. Li, Z. P., Liu, B. H., Zhu, J. K. & Suda, S. Depression of hydrogen evolution during operation of a direct borohydride fuel cell. J. Power Sources 163, 555–559 (2006).

    Article  Google Scholar 

  27. Ma, J., Sahai, Y. & Buchheit, R. G. Direct borohydride fuel cell using Ni-based composite anodes. J. Power Sources 195, 4709–4713 (2010).

    Article  Google Scholar 

  28. Gu, L., Luo, N. & Miley, G. H. Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell. J. Power Sources 173, 77–85 (2007).

    Article  Google Scholar 

  29. Santos, D. M. F., Saturnino, P. G., Lobo, R. F. M. & Sequeira, C. A. C. Direct borohydride/peroxide fuel cells using Prussian blue cathodes. J. Power Sources 208, 131–137 (2012).

    Article  Google Scholar 

  30. He, C., Wang, G., Parrondo, J., Sankarasubramanian, S. & Ramani, V. Pt/RuO2-TiO2 electrocatalysts exhibit excellent hydrogen evolution activity in alkaline media. J. Electrochem. Soc. 164, F1234–F1240 (2017).

    Article  Google Scholar 

  31. Lopez-Haro, M. et al. Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat. Commun. 5, 5229 (2014).

    Article  Google Scholar 

  32. Grew, K. N., McClure, J. P., Chu, D., Kohl, P. A. & Ahlfield, J. M. Understanding transport at the aci–alkaline interface of bipolar membranes. J. Electrochem. Soc. 163, F1572–F1587 (2016).

    Article  Google Scholar 

  33. Parrondo, J. et al. Platinum supported on titanium–ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles. Proc. Natl Acad. Sci. USA 111, 45–50 (2014).

    Article  Google Scholar 

  34. Danilovic, N. et al. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts.Angew. Chem. Int. Ed. 124, 12663–12666 (2012).

    Article  Google Scholar 

  35. Dinan, T. E., Matlosz, M. & Landolt, D. Experimental investigation of the current distribution on a recessed rotating disk electrode. J. Electrochem. Soc. 138, 2947–2951 (1991).

    Article  Google Scholar 

  36. Haynes W. M. CRC Handbook of Chemistry and Physics (CRC, Boca Raton, 2014).

  37. Atwan, M. H., Macdonald, C. L. B., Northwood, D. O. & Gyenge, E. L. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: electrocatalysis and fuel cell performance. J. Power Sources 158, 36–44 (2006).

    Article  Google Scholar 

  38. Cheng, H., Scott, K. & Lovell, K. Material aspects of the design and operation of direct borohydride fuel cells. Fuel Cells 6, 367–375 (2006).

    Article  Google Scholar 

  39. Cheng, H. & Scott, K. Influence of operation conditions on direct borohydride fuel cell performance. J. Power Sources 160, 407–412 (2006).

    Article  Google Scholar 

  40. Cheng, H. & Scott, K. Investigation of Ti mesh-supported anodes for direct borohydride fuel cells. J. Appl. Electrochem. 36, 1361–1366 (2006).

    Article  Google Scholar 

  41. Cheng, H., Scott, K., Lovell, K. V., Horsfall, J. A. & Waring, S. C. Evaluation of new ion exchange membranes for direct borohydride fuel cells. J. Memb. Sci. 288, 168–174 (2007).

    Article  Google Scholar 

  42. Lam, V. W. S. & Gyenge, E. L. High-performance osmium nanoparticle electrocatalyst for direct borohydride PEM fuel cell anodes. J. Electrochem. Soc. 155, B1155–B1160 (2008).

    Article  Google Scholar 

  43. Geng, X., Zhang, H., Ye, W., Ma, Y. & Zhong, H. Ni–Pt/C as anode electrocatalyst for a direct borohydride fuel cell. J. Power Sources 185, 627–632 (2008).

    Article  Google Scholar 

  44. Lam, V. W. S., Alfantazi, A. & Gyenge, E. L. The effect of catalyst support on the performance of PtRu in direct borohydride fuel cell anodes. J. Appl. Electrochem. 39, 1763 (2009).

    Article  Google Scholar 

  45. Celik, C., Boyaci San, F. G. & Sarac, H. I. Improving the direct borohydride fuel cell performance with thiourea as the additive in the sodium borohydride solution. Int. J. Hydrogen Energy 35, 8678–8682 (2010).

    Article  Google Scholar 

  46. Mai, Z., ZhangH., Li, X., Geng, X. & Zhang, H. Polymer electrolyte based on chemically stable and highly conductive alkali-doped polyoxadiazole for direct borohydride fuel cell. Electrochem. Commun. 13, 1009–1012 (2011).

    Article  Google Scholar 

  47. Ma, J., Sahai, Y. & Buchheit, R. G. Evaluation of multivalent phosphate cross-linked chitosan biopolymer membrane for direct borohydride fuel cells. J. Power Sources 202, 18–27 (2012).

    Article  Google Scholar 

  48. Yang, X. et al. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts. Sci. Rep. 2, 567 (2012).

    Article  Google Scholar 

  49. Lam, V. W. S., Kannangara, D. C. W., Alfantazi, A. & Gyenge, E. L. Electrodeposited osmium three-dimensional anodes for direct borohydride fuel cells. J. Power Sources 212, 57–65 (2012).

    Article  Google Scholar 

  50. Huang, C.-C. et al. Direct borohydride fuel cell performance using hydroxide-conducting polymeric nanocomposite electrolytes. J. Polym. Sci. B 51, 1779–1789 (2013).

    Article  Google Scholar 

  51. Ma, J. & Sahai, Y. Effect of electrode fabrication method and substrate material on performance of alkaline fuel cells. Electrochem. Commun. 30, 63–66 (2013).

    Article  Google Scholar 

  52. Behmenyar, G. & Akın, A. N. Investigation of carbon supported Pd–Cu nanoparticles as anode catalysts for direct borohydride fuel cell. J. Power Sources 249, 239–246 (2014).

    Article  Google Scholar 

  53. Yang, X., Wei, X., Liu, C. & Liu, Y. The electrocatalytic application of RuO2 in direct borohydride fuel cells. Mater. Chem. Phys. 145, 269–273 (2014).

    Article  Google Scholar 

  54. Boyacı San, F. G., Okur, O., İyigün Karadağ, Ç., Isik-Gulsac, I. & Okumuş, E. Evaluation of operating conditions on DBFC (direct borohydride fuel cell) performance with PtRu anode catalyst by response surface method. Energy 71, 160–169 (2014).

    Article  Google Scholar 

  55. İyigün Karadağ, Ç., Behmenyar, G., Boyacı San, F. G. & Şener, T. Investigation of carbon supported nanostructured PtAu alloy as electrocatalyst for direct borohydride fuel cell. Fuel Cells 15, 262–269 (2015).

    Article  Google Scholar 

  56. Li, G. R., Wang, Q. Q., Liu, B. H. & Li, Z. P. Porous carbon as anode catalyst support to improve borohydride utilization in a direct borohydride fuel cell. Fuel Cells 15, 270–277 (2015).

    Article  Google Scholar 

  57. Olu, P.-Y., Deschamps, F., Caldarella, G., Chatenet, M. & Job, N. Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells. J. Power Sources 297, 492–503 (2015).

    Article  Google Scholar 

  58. Zhiani, M. & Mohammadi, I. Performance study of passive and active direct borohydride fuel cell employing a commercial Pd decorated Ni–Co/C anode catalyst. Fuel 166, 517–525 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with gratitude the Office of Naval Research (ONR grant no. N00014-16-1-2833) for funding this work. The authors acknowledge the Institute of Materials Science and Engineering for the use of Bruker ICO AFM, JEOL JEM-2000 FX TEM, and staff assistance and the Nano Research Facility within the Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis for access to SEM facilities. The authors acknowledge financial support from the McKelvery School of Engineering at Washington University in St. Louis. V.R. acknowledges with gratitude generous support from the Roma B. and Raymond H. Wittcoff Distinguished University Professorship.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. carried out the DBFC experiments, synthesized the ionomers, characterized the materials by SEM, FTIR, AFM and NMR, analysed the data, prepared the manuscript and aided in revisions. Z.W. and C.H. carried out the RPE experiments. C.H. carried out the TEM experiment. J.P. assisted with the experiments, manuscript revisions and data analysis. S.S. conceived the RPE experiments, carried out some SEM measurements and assisted with the RPE data analysis and manuscript revisions. V.R. conceived and supervised the project and played a primary role in data analysis, manuscript preparation and revision.

Corresponding authors

Correspondence to Shrihari Sankarasubramanian or Vijay Ramani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Methods, Supplementary Figures 1–11, Supplementary Tables 1–2, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Parrondo, J., He, C. et al. Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells. Nat Energy 4, 281–289 (2019). https://doi.org/10.1038/s41560-019-0330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-019-0330-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing