Article | Published:

High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes


Solid electrolytes (SEs) are widely considered as an ‘enabler’ of lithium anodes for high-energy batteries. However, recent reports demonstrate that the Li dendrite formation in Li7La3Zr2O12 (LLZO) and Li2S–P2S5 is actually much easier than that in liquid electrolytes of lithium batteries, by mechanisms that remain elusive. Here we illustrate the origin of the dendrite formation by monitoring the dynamic evolution of Li concentration profiles in three popular but representative SEs (LiPON, LLZO and amorphous Li3PS4) during lithium plating using time-resolved operando neutron depth profiling. Although no apparent changes in the lithium concentration in LiPON can be observed, we visualize the direct deposition of Li inside the bulk LLZO and Li3PS4. Our findings suggest the high electronic conductivity of LLZO and Li3PS4 is mostly responsible for dendrite formation in these SEs. Lowering the electronic conductivity, rather than further increasing the ionic conductivity of SEs, is therefore critical for the success of all-solid-state Li batteries.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

  2. 2.

    Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).

  3. 3.

    Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

  4. 4.

    Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

  5. 5.

    Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

  6. 6.

    Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

  7. 7.

    Brissot, C., Rosso, M., Chazalviel, J. N. & Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81, 925–929 (1999).

  8. 8.

    Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y. M. & Chen, Z. B. Review—practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164, A1731–A1744 (2017).

  9. 9.

    Bates, J., Dudney, N., Neudecker, B., Ueda, A. & Evans, C. Thin-film lithium and lithium-ion batteries. Solid State Ionics 135, 33–45 (2000).

  10. 10.

    Neudecker, B. J., Dudney, N. J. & Bates, J. B. ‘Lithium-free’ thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517–523 (2000).

  11. 11.

    Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

  12. 12.

    Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

  13. 13.

    Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

  14. 14.

    Sharafi, A., Meyer, H. M., Nanda, J., Wolfenstine, J. & Sakamoto, J. Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power Sources 302, 135–139 (2016).

  15. 15.

    Ishiguro, K. et al. Ta-doped Li7La3Zr2O12 for water-stable lithium electrode of lithium–air batteries. J. Electrochem. Soc. 161, A668–A674 (2014).

  16. 16.

    Sudo, R. et al. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics 262, 151–154 (2014).

  17. 17.

    Cheng, L. et al. Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl. Mater. Interfaces 7, 2073–2081 (2015).

  18. 18.

    Ren, Y. Y., Shen, Y., Lin, Y. H. & Nan, C. W. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 57, 27–30 (2015).

  19. 19.

    Schmidt, R. D. & Sakamoto, J. In-situ, non-destructive acoustic characterization of solid state electrolyte cells. J. Power Sources 324, 126–133 (2016).

  20. 20.

    Tsai, C. L. et al. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 8, 10617–10626 (2016).

  21. 21.

    Cheng, E. J., Sharafi, A. & Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017).

  22. 22.

    Yonemoto, F. et al. Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12. J. Power Sources 343, 207–215 (2017).

  23. 23.

    Aguesse, F. et al. Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl. Mater. Interfaces 9, 3808–3816 (2017).

  24. 24.

    Sharafi, A., Haslam, C. G., Kerns, R. D., Wolfenstine, J. & Sakamoto, J. Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J. Mater. Chem. A 5, 21491–21504 (2017).

  25. 25.

    Sharafi, A. et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 29, 7961–7968 (2017).

  26. 26.

    Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

  27. 27.

    Garcia-Mendez, R., Mizuno, F., Zhang, R., Arthur, T. S. & Sakamoto, J. Effect of processing conditions of 75Li2S–25P2S5 solid electrolyte on its DC electrochemical behavior. Electrochim. Acta 237, 144–151 (2017).

  28. 28.

    Han, F., Yue, J., Zhu, X. & Wang, C. Suppressing Li dendrite formation in Li2S–P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 8, 1703644 (2018).

  29. 29.

    Nagao, M. et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte. Phys. Chem. Chem. Phys. 15, 18600–18606 (2013).

  30. 30.

    Taylor, N. J. et al. Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte. J. Power Sources 396, 314–318 (2018).

  31. 31.

    Choudhury, S. & Archer, L. A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2, 1500246 (2016).

  32. 32.

    Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

  33. 33.

    Raj, R. & Wolfenstine, J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries. J. Power Sources 343, 119–126 (2017).

  34. 34.

    Yu, S. et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 28, 197–206 (2016).

  35. 35.

    Iriyama, Y., Kako, T., Yada, C., Abe, T. & Ogumi, Z. Charge transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium cobalt oxide thin film interface. Solid State Ionics 176, 2371–2376 (2005).

  36. 36.

    Chen, Y.-T. et al. Voltammetric enhancement of Li-ion conduction in Al-doped Li7−xLa3Zr2O12 solid electrolyte. J. Phys. Chem. C 121, 15565–15573 (2017).

  37. 37.

    Rangasamy, E., Wolfenstine, J. & Sakamoto, J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics 206, 28–32 (2012).

  38. 38.

    Shin, B. R. et al. Comparative study of TiS2/Li–In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim. Acta 146, 395–402 (2014).

  39. 39.

    Minami, K., Mizuno, F., Hayashi, A. & Tatsumisago, M. Lithium ion conductivity of the Li2S–P2S5 glass-based electrolytes prepared by the melt quenching method. Solid State Ionics 178, 837–841 (2007).

  40. 40.

    Li, J., Dudney, N. J., Nanda, J. & Liang, C. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl. Mater. Interfaces 6, 10083–10088 (2014).

  41. 41.

    Le Van-Jodin, L., Ducroquet, F., Sabary, F. & Chevalier, I. Dielectric properties, conductivity and Li+ ion motion in LiPON thin films. Solid State Ionics 253, 151–156 (2013).

  42. 42.

    Su, Y. et al. LiPON thin films with high nitrogen content for application in lithium batteries and electrochromic devices prepared by RF magnetron sputtering. Solid State Ionics 282, 63–69 (2015).

  43. 43.

    Han, F. D., Zhu, Y. Z., He, X. F., Mo, Y. F. & Wang, C. S. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016).

  44. 44.

    De Jonghe, L. C., Feldman, L. & Beuchele, A. Slow degradation and electron conduction in sodium/beta-aluminas. J. Mater. Sci. 16, 780–786 (1981).

  45. 45.

    De Jonghe, L. C. Transport number gradients and solid electrolyte degradation. J. Electrochem. Soc. 129, 752–755 (1982).

  46. 46.

    Liu, Z. et al. Interfacial study on solid electrolyte interphase at Li metal anode: Implication for Li dendrite growth. J. Electrochem. Soc. 163, A592–A598 (2016).

  47. 47.

    Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).

  48. 48.

    Ziegler, J. F., Baglin, J. E. E. & Cole, G. W. Technique for determining concentration profiles of boron impurities in substrates. J. Appl. Phys. 43, 3809–3815 (1972).

  49. 49.

    Downing, R. G., Lamaze, G. P., Langland, J. K. & Hwang, S. T. Neutron depth profiling: Overview and description of NIST facilities. J. Res. Natl Inst. Stand. Technol. 98, 109–126 (1993).

  50. 50.

    Gao, J., Shi, S.-Q. & Li, H. Brief overview of electrochemical potential in lithium ion batteries. Chin. Phys. B 25, 018210 (2015).

  51. 51.

    Zhou, W. et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016).

  52. 52.

    Luntz, A. C., Voss, J. & Reuter, K. Interfacial challenges in solid-state Li ion batteries. J. Phys. Chem. Lett. 6, 4599–4604 (2015).

  53. 53.

    Kim, K. H. et al. Characterization of grain-boundary phases in Li7La3Zr2O12 solid electrolytes. Mater. Charact. 91, 101–106 (2014).

  54. 54.

    Cheng, L. et al. Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12. J. Mater. Chem. A 2, 172–181 (2014).

  55. 55.

    Aryanfar, A. et al. Thermal relaxation of lithium dendrites. Phys. Chem. Chem. Phys. 17, 8000–8005 (2015).

  56. 56.

    Aryanfar, A. et al. Annealing kinetics of electrodeposited lithium dendrites. J. Chem. Phys. 143, 134701 (2015).

  57. 57.

    Kataoka, K., Nagata, H. & Akimoto, J. Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application. Sci. Rep. 8, 9965 (2018).

  58. 58.

    Schnell, J. et al. All-solid-state lithium-ion and lithium metal batteries—paving the way to large-scale production. J. Power Sources 382, 160–175 (2018).

  59. 59.

    Ma, C. et al. Interfacial stability of Li metal–solid electrolyte elucidated via in situ electron microscopy. Nano. Lett. 16, 7030–7036 (2016).

Download references


C.W. and F.H. gratefully acknowledge support by the Army Research Office (Award No. W911NF1510187) and the National Science Foundation (Award No. 1805159). A.S.W. and N.J.D. acknowledge support from the US Department of Energy, Advanced Research Projects Agency for Energy (ARPA-E), IONICS Program (Award No. DE-AR0000775). H.W. acknowledges the support of NIST Award 70NANB12H238, and the use of the cold neutron facility at the NIST Center for Neutron Research. The SEM test was supported by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DESC0001160. The FIB–SEM was performed at the Center for Nanophase Materials Sciences at Oak Ridge National Lab, which is a DOE-BES supported user facility. C.W. and F.H. also acknowledge the support of the Maryland Nanocenter and its AIMLab and FabLab. We also thank B. Dunn for valuable discussions and R. G. Downing, H. Chen-Mayer and J. L. Weaver for the help on the NDP measurement.

Author information

F.H. performed the operando NDP tests, analysed the data and wrote the manuscript. A.S.W. and N.J.D. fabricated the LiCoO2/LiPON/Cu thin-film cells and were intimately involved in the manuscript writing. J.Y. fabricated the Li/LLZO/Cu and Li/Li3PS4/Pt cells and helped with the electrochemical testing. X.F. and F.W. performed the SEM tests of the LLZO and Li3PS4 pellets after Li plating. M.C. and D.N.L. performed the FIB-SEM test. H.W. advised on the NDP test and data analysis. C.W. supervised the study and contributed to the manuscript writing. All authors discussed the results.

Competing interests

The authors declare no competing interests.

Correspondence to Nancy J. Dudney or Howard Wang or Chunsheng Wang.

Supplementary Information

Supplementary Information

Supplementary Figures 1–11, Supplementary Tables 1–2, Supplementary References

Supplementary Video 1

Integration of the cross-section FIB-SEM images of the LLZO pellets after lithium plating at 100° C. Relevant images are also shown in Supplementary Figure 9

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Operando NDP.
Fig. 2: Electrochemistry.
Fig. 3: Correlation between electric charge and accumulated Li content.
Fig. 4: Evolution of the Li content of dendrites in the bulk region of SEs.
Fig. 5: Visualization of the depth distribution of dendrites in SEs.
Fig. 6: Temperature dependence of electronic conductivity.