Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries

Abstract

The design of Faradaic battery electrodes that exhibit high rate capability and long cycle life equivalent to those of the electrodes of electrical double-layer capacitors is a big challenge. Here we report a strategy to fill this performance gap using the concept of Grotthuss proton conduction, in which proton transfer takes place by means of concerted cleavage and formation of O–H bonds in a hydrogen-bonding network. We show that in a hydrated Prussian blue analogue (Turnbull’s blue) the abundant lattice water molecules with a contiguous hydrogen-bonding network facilitate Grotthuss proton conduction during redox reactions. When using it as a battery electrode, we find high-rate behaviours at 4,000 C (380 A g−1, 508 mA cm−2), and a long cycling life of 0.73 million cycles. These results for diffusion-free Grotthuss topochemistry of protons, in contrast to orthodox battery electrochemistry, which requires ion diffusion inside electrodes, indicate a potential direction to revolutionize electrochemical energy storage for high-power applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transfer of charges and energy, and three classes of PBAs.
Fig. 2: Electrochemical performance of CuFe-TBA.
Fig. 3: Structural studies of CuFe-TBA.
Fig. 4: DFT calculations of the proton-binding sites.
Fig. 5: Structural evolution during proton (de)insertion.

Data availability

The additional data related to this study are available from the corresponding authors upon request.

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  2. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  Google Scholar 

  3. Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    Article  Google Scholar 

  4. Yang, Z. et al. Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011).

    Article  Google Scholar 

  5. Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).

    Article  Google Scholar 

  6. Evanko, B. et al. Efficient charge storage in dual-redox electrochemical capacitors through reversible counterion-induced solid complexation. J. Am. Chem. Soc. 138, 9373–9376 (2016).

    Article  Google Scholar 

  7. Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  Google Scholar 

  8. Li, W., Dahn, J. R. & Wainwright, D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1117 (1994).

    Article  Google Scholar 

  9. Luo, J.-Y., Cui, W.-J., He, P. & Xia, Y.-Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010).

    Article  Google Scholar 

  10. Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  Google Scholar 

  11. Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    Article  Google Scholar 

  12. Komaba, S., Hasegawa, T., Dahbi, M. & Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015).

    Article  Google Scholar 

  13. Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    Article  Google Scholar 

  14. Lin, M.-C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

    Article  Google Scholar 

  15. Kundu, D., Adams, B. D., Duffort, V., Vajargah, S. H. & Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016).

    Article  Google Scholar 

  16. Ardizzone, S., Fregonara, G. & Trasatti, S. “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 35, 263–267 (1990).

    Article  Google Scholar 

  17. Emanuelsson, R., Sterby, M., Strømme, M. & Sjödin, M. An all-organic proton battery. J. Am. Chem. Soc. 139, 4828–4834 (2017).

    Article  Google Scholar 

  18. Sun, W. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 9775–9778 (2017).

    Article  Google Scholar 

  19. Lee, J. H., Ali, G., Kim, D. H. & Chung, K. Y. Metal–organic framework cathodes based on a vanadium hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries. Adv. Energy Mater. 7, 1601491 (2017).

    Article  Google Scholar 

  20. Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    Article  Google Scholar 

  21. Carlson, C. E. The proton radius puzzle. Prog. Part. Nucl. Phys. 82, 59–77 (2015).

    Article  Google Scholar 

  22. Grotthuss, C. J. T. Sur la decomposition de l’eau et des corps q’uelle tient en dissolution à l’aide de l'électricité galvanique. Ann. Chim. LVIII, 54–74 (1806).

    Google Scholar 

  23. Wolke, C. T. et al. Spectroscopic snapshots of the proton-transfer mechanism in water. Science 354, 1131–1135 (2016).

    Article  Google Scholar 

  24. Knight, C. & Voth, G. A. The curious case of the hydrated proton. Acc. Chem. Res. 45, 101–109 (2011).

    Article  Google Scholar 

  25. Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995).

    Article  Google Scholar 

  26. Thämer, M., De Marco, L., Ramasesha, K., Mandal, A. & Tokmakoff, A. Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350, 78–82 (2015).

    Article  Google Scholar 

  27. Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999).

    Article  Google Scholar 

  28. Gileadi, E. & Kirowa-Eisner, E. Electrolytic conductivity—the hopping mechanism of the proton and beyond. Electrochim. Acta 51, 6003–6011 (2006).

    Article  Google Scholar 

  29. Shimizu, G. K., Taylor, J. M. & Kim, S. Proton conduction with metal–organic frameworks. Science 341, 354–355 (2013).

    Article  Google Scholar 

  30. Ohkoshi, S.-i et al. High proton conductivity in Prussian blue analogues and the interference effect by magnetic ordering. J. Am. Chem. Soc. 132, 6620–6621 (2010).

    Article  Google Scholar 

  31. Kaye, S. S. & Long, J. R. Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). J. Am. Chem. Soc. 127, 6506–6507 (2005).

    Article  Google Scholar 

  32. Wessells, C. D., Huggins, R. A. & Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011).

    Article  Google Scholar 

  33. Wessells, C. D., Peddada, S. V., Huggins, R. A. & Cui, Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425 (2011).

    Article  Google Scholar 

  34. Herren, F., Fischer, P., Ludi, A. & Hälg, W. Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3xH2O. Location of water molecules and long-range magnetic order. Inorg. Chem. 19, 956–959 (1980).

    Article  Google Scholar 

  35. Asakura, D. et al. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability. J. Am. Chem. Soc. 135, 2793–2799 (2013).

    Article  Google Scholar 

  36. Sun, H. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017).

    Article  Google Scholar 

  37. Liu, C., Li, F., Ma, L. P. & Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 22, 28–62 (2010).

    Article  Google Scholar 

  38. Zhang, H., Yu, X. & Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotech. 6, 277–281 (2011).

    Article  Google Scholar 

  39. Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013).

    Article  Google Scholar 

  40. Zheng, J. et al. Janus solid–liquid interface enabling ultrahigh charging and discharging rate for advanced Lithium-ion batteries. Nano. Lett. 15, 6102–6109 (2015).

    Article  Google Scholar 

  41. Lee, S. W. et al. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotech. 5, 531–537 (2010).

    Article  Google Scholar 

  42. Augustyn, V. & Gogotsi, Y. 2D materials with nanoconfined fluids for electrochemical energy storage. Joule 1, 443–452 (2017).

    Article  Google Scholar 

  43. Zwier, T. S. The structure of protonated water clusters. Science 304, 1119–1120 (2004).

    Article  Google Scholar 

  44. Wei, M. et al. A large protonated water cluster H+(H2O)27 in a 3D metal–organic framework. J. Am. Chem. Soc. 128, 13318–13319 (2006).

    Article  Google Scholar 

  45. Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).

    Article  Google Scholar 

  46. Tuckerman, M. E., Marx, D. & Parrinello, M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417, 925–929 (2002).

    Article  Google Scholar 

  47. Bai, Y. et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat. Mater. 7, 626–630 (2008).

    Article  Google Scholar 

  48. Wu, X. et al. Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries. ACS Appl. Mater. Interfaces 8, 23706–23712 (2016).

    Article  Google Scholar 

  49. Asakura, D. et al. Fabrication of a cyanide-bridged coordination polymer electrode for enhanced electrochemical ion storage ability. J. Phys. Chem. C 116, 8364–8369 (2012).

    Article  Google Scholar 

  50. Ono, K. et al. Grain-boundary-free super-proton conduction of a solution-processed Prussian-blue nanoparticle film. Angew. Chem. Int. Ed. 56, 5531–5535 (2017).

    Article  Google Scholar 

  51. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  52. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

    Article  Google Scholar 

  53. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  55. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  Google Scholar 

  56. Dudarev, S., Botton, G., Savrasov, S., Humphreys, C. & Sutton, A. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505 (1998).

    Article  Google Scholar 

  57. Ling, C., Chen, J. & Mizuno, F. First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: the important role of ionic radius. J. Phys. Chem. C 117, 21158–21165 (2013).

    Article  Google Scholar 

  58. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  Google Scholar 

  59. Robert, C. P. Casella Monte Carlo Statistical Methods 2nd edn (Springer, New York, 2004).

  60. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  61. Henkelman, G., Uberuaga, B. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  Google Scholar 

  62. Henkelman, G. & Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).––

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation, Award Number 1551693. J.L. gratefully acknowledges support from the US DOE, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Argonne National Laboratory is operated for DOE Office of Science by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. This research used resources of the APS (9-BM and 11-ID-D), a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract DE-AC02-06CH11357. The work used the XSEDE, which is supported by National Science Foundation grant ACI-1548562. Through XSEDE, computing was performed on Stambede2 at the Texas Advanced Computing Centre through allocation TG-DMR130046. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

X.J. conceived the idea and designed the research. X.W. conducted the material preparation, electrochemical tests and data analyses with assistance from Y.Q. J.J.H. and T.W.S. performed Rietveld refinements of the synchrotron X-ray and neutron diffraction results. P.A.G. supervised the DFT calculations that W.S. and W.H. carried out. J.L. and T.W. supervised the synchrotron-based characterization and transmission electron microscopy measurements that L.M., T.L., X.B. and Y.Y. performed. J.N. collected the neutron diffraction data. All authors discussed the data and reviewed the final draft.

Corresponding authors

Correspondence to P. Alex Greaney, Jun Lu or Xiulei Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–27, Supplementary Tables 1–2, Supplementary References

Supplementary Video 1

The relaxation process of the proton conduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Hong, J.J., Shin, W. et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat Energy 4, 123–130 (2019). https://doi.org/10.1038/s41560-018-0309-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0309-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing