Article | Published:

Energy harvesting near room temperature using a thermomagnetic generator with a pretzel-like magnetic flux topology

Nature Energyvolume 4pages6874 (2019) | Download Citation


To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. Here we demonstrate that guiding the magnetic flux with an appropriate topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude. Through a combination of experiments and simulations, we show that a pretzel-like topology results in a sign reversal of the magnetic flux. This avoids the drawbacks of previous designs, namely, magnetic stray fields, hysteresis and complex geometries of the thermomagnetic material. Our demonstrator, which is based on magnetocaloric plates, illustrates that this solid-state energy conversion technology presents a key step towards becoming competitive with thermoelectrics for energy harvesting near room temperature.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data sets generated and analysed during the current study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Schierning, G. Bring on the heat. Nat. Energy 3, 92–93 (2018).

  2. 2.

    Champier, D. Thermoelectric generators: a review of applications. Energy Convers. Manag. 140, 167–181 (2017).

  3. 3.

    Tesla, N. Pyromagneto electric generator. US patent 428,057 (1890).

  4. 4.

    Edison, T. A. Pyromagnetic generator. US patent 476,983 (1892).

  5. 5.

    Srivastava, V., Song, Y., Bhatti, K. & James, R. D. The direct conversion of heat to electricity using multiferroic alloys. Adv. Energy Mat. 1(1), 97–104 (2011).

  6. 6.

    Pecharsky, V. K. & Gschneidner, K. A.Jr Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997).

  7. 7.

    Waske, A., Gruner, M. E., Gottschall, T. & Gutfleisch, O. Magnetocaloric materials for refrigeration near room temperature. MRS. Bull. 43, 269–273 (2018).

  8. 8.

    Christiaanse, T. & Brück, E. Proof-of-concept static thermomagnetic generator experimental device. Met. Mat. Trans. E 1(1), 36–40 (2014).

  9. 9.

    Brillouin, L. & Iskenderian, H. P. Thermomagnetic generator. El. Com. 25(3), 300–311 (1948).

  10. 10.

    Elliott, J. F. Thermomagnetic generator. J. Appl. Phys. 30(11), 1774–1777 (1959).

  11. 11.

    Kirol, L. D. & Mills, J. I. Numerical analysis of thermomagnetic generators. J. Appl. Phys. 56, 824–828 (1984).

  12. 12.

    Hsu, C.-J., Sandoval, S. M., Wetzlar, K. P. & Carman, G. P. Thermomagnetic conversion efficiencies for ferromagnetic materials. J. Appl. Phys. 110, 123923 (2011).

  13. 13.

    Ohkoshi, M., Kobayashi, H., Katayama, T., Hirano, M. & Tsushima, T. A proposal of application of spin reorientation phenomenon to the thermomagnetic power generation. Jpn J. Appl. Phys. 15(10), 2019 (1967).

  14. 14.

    Brungsberg, H. Vorrichtung zur umwandlung von thermischer in elektrische oder mechanische energie mittels eines magnetischen systems. DE Patent DE 3106520 (1981).

  15. 15.

    Kazumasa, S. Thermomagnetic power generation apperatus using thermosensitive magnetic substance. J Patent 07107764 A (1995).

  16. 16.

    Herzig, A., Herzig, K. & Herzig, Y. Vorrichtung und verfahren zur gewinnung elektrischer energie aus wärmeenergie. DE Patent DE 10 2007 023 505 A1 (2007).

  17. 17.

    Edison, T. A. Pyromagnetic motor. US Patent 380,100 (1888).

  18. 18.

    Tesla, N. Thermomagnetic motor. US Patent 396,121 (1889).

  19. 19.

    Kishore, R. A. & Priya, S. A review on design and performance of thermomagnetic devices. Renew. Sustain. Energy Rev. 81, 33–44 (2018).

  20. 20.

    Swiss Blue Energy AG, Thermo-magnetic motor; (accessed 2 March 2018).

  21. 21.

    Gueltig, M. et al. High-performance thermomagnetic generators based on Heusler alloy films. Adv. Energy Mater. 7, 1601879 (2017).

  22. 22.

    Chun, J. et al. Thermo-magneto-electric generator arrays for active heat recovery system. Sci. Rep. 7, 41383 (2017).

  23. 23.

    O’Handley, R. C. Modern Magnetic Materials: Principles and Applications (John Wiley & Sons, New York, 2000).

  24. 24.

    Advanced Materials—The Key to Progress (VACUUMSCHMELZE, 2015);

  25. 25.

    Kitanovski, A. et al. Magnetocaloric Energy Conversion (Springer, Heidelberg, 2015).

  26. 26.

    Waske, A. et al. Asymmetric first-order transition and interlocked particle state in magnetocaloric La(Fe,Si)13. Phys. Stat. Sol. RRL 9, 136–140 (2015).

Download references


We thank S. Grasemann for assistance with the technical realization of the TMG and the technical drawing, A. Chirkova for the photo and U. K. Rößler and M. Kohl for discussions.

Author information

Author notes

    • Kai Sellschopp

    Present address: Technische Universität Hamburg, Institut für Keramische Hochleistungswerkstoffe, Hamburg, Germany


  1. IFW Dresden, Dresden, Germany

    • Anja Waske
    • , Daniel Dzekan
    • , Kai Sellschopp
    • , Dietmar Berger
    • , Alexander Stork
    • , Kornelius Nielsch
    •  & Sebastian Fähler
  2. Institute of Materials Science, TU Dresden, Dresden, Germany

    • Anja Waske
    • , Daniel Dzekan
    • , Kai Sellschopp
    • , Alexander Stork
    •  & Kornelius Nielsch
  3. Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany

    • Anja Waske


  1. Search for Anja Waske in:

  2. Search for Daniel Dzekan in:

  3. Search for Kai Sellschopp in:

  4. Search for Dietmar Berger in:

  5. Search for Alexander Stork in:

  6. Search for Kornelius Nielsch in:

  7. Search for Sebastian Fähler in:


A.W. and S.F. conceived the experiments and wrote the outline of the paper. D.D. characterized the TMG. K.S. proposed the topology with genus = 3 and optimized the design. D.B. conducted most of the finite element calculations. A.S. characterized the thermomagnetic material. K.N. added the discussion on the impact and thermoelectric generators. S.F. wrote the first version of the manuscript, and all the authors contributed to the final version.

Competing interests

K.S., S.F. and A.W. filed a patent (DE patent application no. DE 10 2016 122 274.7) on this topology.

Corresponding author

Correspondence to Sebastian Fähler.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–17, Supplementary Tables 1–2, Supplementary Notes 1–14 and Supplementary References

About this article

Publication history




Issue Date


Further reading