Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces

Abstract

Developing an understanding of structure–activity relationships and reaction mechanisms of catalytic processes is critical to the successful design of highly efficient catalysts. As a fundamental reaction in fuel cells, elucidation of the oxygen reduction reaction (ORR) mechanism at Pt(hkl) surfaces has remained a significant challenge for researchers. Here, we employ in situ electrochemical surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) calculation techniques to examine the ORR process at Pt(hkl) surfaces. Direct spectroscopic evidence for ORR intermediates indicates that, under acidic conditions, the pathway of ORR at Pt(111) occurs through the formation of HO2*, whereas at Pt(110) and Pt(100) it occurs via the generation of OH*. However, we propose that the pathway of the ORR under alkaline conditions at Pt(hkl) surfaces mainly occurs through the formation of O2. Notably, these results demonstrate that the SERS technique offers an effective and reliable way for real-time investigation of catalytic processes at atomically flat surfaces not normally amenable to study with Raman spectroscopy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the SHINERS study of the ORR process and correlated characterization and 3D-FDTD results at Pt(hkl) surfaces.
Fig. 2: Electrochemical results of the ORR process at Pt(hkl) surfaces in acidic conditions and correlated EC-SHINERS and DFT results of the ORR at a Pt(111) surface.
Fig. 3: In situ EC-SHINERS results of the ORR at Pt(100) and Pt(110) surfaces in acidic conditions and DFT result of OH* at a Pt(110) surface.
Fig. 4: EC-SHINERS study of the ORR at Pt(hkl) surfaces in alkaline conditions.
Fig. 5: The proposed mechanism of the ORR at Pt(hkl) surfaces in a 0.1 M HClO4 solution and relevant Gibbs free energy (eV) of different intermediates at Pt(hkl) surfaces.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Marković, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2016).

    Article  Google Scholar 

  2. Conder, J. et al. Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction. Nat. Energy 2, 17069 (2017).

    Article  Google Scholar 

  3. Perry, R. H. et al. Capturing fleeting intermediates in a catalytic C–H amination reaction cycle. Proc. Natl Acad. Sci. USA 109, 18295–18299 (2012).

    Article  Google Scholar 

  4. Li, J. et al. Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nat. Energy 2, 17111 (2017).

    Article  Google Scholar 

  5. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    Article  Google Scholar 

  6. Xia, B. Y. et al. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2017).

    Article  Google Scholar 

  7. Bu, L. Z. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354, 1410–1414 (2016).

    Article  Google Scholar 

  8. Postlethwaite, T. A., Hutchison, J. E., Murray, R., Fosset, B. & Amatore, C. Interdigitated array electrode as an alternative to the rotated ring-disk electrode for determination of the reaction products of dioxygen reduction. Anal. Chem. 68, 2951–2958 (1996).

    Article  Google Scholar 

  9. Gómez-Marín, A. M., Rizo, R. & Feliu, J. M. Oxygen reduction reaction at Pt single crystals: A critical overview. Catal. Sci. Technol. 4, 1685–1698 (2014).

    Article  Google Scholar 

  10. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  11. Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).

    Article  Google Scholar 

  12. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  Google Scholar 

  13. Kunimatsu, K., Yoda, T., Tryk, D. A., Uchida, H. & Watanabe, M. In situ ATR-FTIR study of oxygen reduction at the Pt/Nafion interface. Phys. Chem. Chem. Phys. 12, 621–629 (2010).

    Article  Google Scholar 

  14. Gewirth, A. A. & Li, X. Oxygen electroreduction through a superoxide intermediate on Bi-modified Au surfaces. J. Am. Chem. Soc. 127, 5252–5260 (2005).

    Article  Google Scholar 

  15. Gewirth, A. A. & Kim, J. Mechanism of oxygen electroreduction on gold surfaces in basic media. J. Phys. Chem. B 110, 2565–2571 (2006).

    Article  Google Scholar 

  16. Itoh, T., Maeda, T. & Kasuya, A. In situ surface-enhanced Raman scattering spectroelectrochemistry of oxygen species. Faraday Discuss. 132, 95–109 (2006).

    Article  Google Scholar 

  17. Shao, M. H., Liu, P. & Adzic, R. R. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes. J. Am. Chem. Soc. 128, 7408–7409 (2006).

    Article  Google Scholar 

  18. Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014).

    Article  Google Scholar 

  19. Ohta, N., Nomura, K. & Yagi, I. Adsorption and electroreduction of oxygen on gold in acidic media: In situ spectroscopic identification of adsorbed molecular oxygen and hydrogen superoxide. J. Phys. Chem. C 116, 14390–14400 (2012).

    Article  Google Scholar 

  20. Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    Article  Google Scholar 

  21. Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J. Electroanal. Chem. 84, 1–20 (1977).

    Article  Google Scholar 

  22. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    Article  Google Scholar 

  23. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    Article  Google Scholar 

  24. Li, J. F. et al. Extraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticles. J. Am. Chem. Soc. 133, 15922–15925 (2011).

    Article  Google Scholar 

  25. Ding, S. Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021–16036 (2016).

    Article  Google Scholar 

  26. Butcher, D. P., Boulos, S. P., Murphy, C. J., Ambrosio, R. C. & Gewirth, A. A. Face-dependent shell-isolated nanoparticle enhanced Raman spectroscopy of 2,2′-bipyridine on Au(100) and Au(111). J. Phys. Chem. C 116, 5128–5140 (2012).

    Article  Google Scholar 

  27. Honesty, N. R. & Gewirth, A. A. Shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) investigation of benzotriazole film formation on Cu(100), Cu(111), and Cu(poly). J. Raman Spectrosc. 43, 46–50 (2012).

    Article  Google Scholar 

  28. Li, J. F., Rudnev, A., Fu, Y., Bodappa, N. & Wandlowski, T. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: Tuning preparation strategies and selected applications. ACS Nano 7, 8940–8952 (2013).

    Article  Google Scholar 

  29. Guan, S. L. et al. Structure sensitivity in catalytic hydrogenation at platinum surfaces measured by shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). ACS Catal. 6, 1822–1832 (2016).

    Article  Google Scholar 

  30. Li, C. Y. et al. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 7648–7651 (2015).

    Article  Google Scholar 

  31. Li, J. F. et al. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: Correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface. J. Am. Chem. Soc. 137, 2400–2408 (2015).

    Article  Google Scholar 

  32. Galloway, T. A. & Hardwick, L. J. Utilizing in situ electrochemical SHINERS for oxygen reduction reaction studies in aprotic electrolytes. J. Phys. Chem. Lett. 7, 2119–2124 (2016).

    Article  Google Scholar 

  33. Taflove, A. & Hagness, S. C. Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House Press, Norwood, 2005).

  34. Yee, K. S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966).

    Article  Google Scholar 

  35. Chen, S. et al. How to light special hot spots in multiparticle-film configurations. ACS Nano 10, 581–587 (2016).

    Article  Google Scholar 

  36. Chen, S. et al. Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces. J. Phys. Chem. C 119, 5246–5251 (2015).

    Article  Google Scholar 

  37. Marković, N. M., Gasteiger, H. & Ross, P. N. Kinetics of oxygen reduction on Pt(hkl) electrodes: Implications for the crystallite size effect with supported Pt electrocatalysts. J. Electrochem. Soc. 144, 1591–1597 (1997).

    Article  Google Scholar 

  38. Kuzume, A., Herrero, E. & Feliu, J. M. Oxygen reduction on stepped platinum surfaces in acidic media. J. Electroanal. Chem. 599, 333–343 (2007).

    Article  Google Scholar 

  39. Gomez-Marin, A. M. & Feliu, J. M. New insights into the oxygen reduction reaction mechanism on Pt(111): A detailed electrochemical study. ChemSusChem 6, 1091–1100 (2013).

    Article  Google Scholar 

  40. Briega-Martos, V., Herrero, E. & Feliu, J. M. Effect of pH and water structure on the oxygen reduction reaction on platinum electrodes. Electrochim. Acta 241, 497–509 (2017).

    Article  Google Scholar 

  41. Zhang, Y. & Weaver, M. J. Application of surface-enhanced Raman-spectroscopy to organic electrocatalytic systems: Decomposition and electrooxidation of methanol and formic-acid on gold and platinum-film electrodes. Langmuir 9, 1397–1403 (1993).

    Article  Google Scholar 

  42. Climent, V., Gomez, R., Orts, J. M. & Feliu, J. M. Thermodynamic analysis of the temperature dependence of OH adsorption on Pt(111) and Pt(100) electrodes in acidic media in the absence of specific anion adsorption. J. Phys. Chem. B 110, 11344–11351 (2006).

    Article  Google Scholar 

  43. Gómez-Marín, A. M., Clavilier, J. & Feliu, J. M. Sequential Pt(111) oxide formation in perchloric acid: An electrochemical study of surface species inter-conversion. J. Electroanal. Chem. 688, 360–370 (2013).

    Article  Google Scholar 

  44. Zhao, M. & Anderson, A. B. Predicting the double layer width on Pt(111) in acid and base with theory and extracting it from experimental voltammograms. J. Phys. Chem. C 121, 28051–28064 (2017).

    Article  Google Scholar 

  45. Tanaka, H. et al. Infrared reflection absorption spectroscopy of OH adsorption on the low index planes of Pt. Electrocatalysis 6, 295–299 (2014).

    Article  Google Scholar 

  46. Briega-Martos, V. et al. An aza-fused π-conjugated microporous framework catalyzes the production of hydrogen peroxide. ACS Catal. 7, 1015–1024 (2016).

    Article  Google Scholar 

  47. Keith, J. A. & Jacob, T. Theoretical studies of potential-dependent and competing mechanisms of the electrocatalytic oxygen reduction reaction on Pt(111). Angew. Chem. Int. Ed. 49, 9521–9525 (2010).

    Article  Google Scholar 

  48. Keith, J. A., Jerkiewicz, G. & Jacob, T. Theoretical investigations of the oxygen reduction reaction on Pt(111). ChemPhysChem 11, 2779–2794 (2010).

    Article  Google Scholar 

  49. Duan, Z. & Wang, G. Comparison of reaction energetics for oxygen reduction reactions on Pt(100), Pt(111), Pt/Ni(100), and Pt/Ni(111) surfaces: A first-principles study. J. Phys. Chem. C 117, 6284–6292 (2013).

    Article  Google Scholar 

  50. Tian, F. & Anderson, A. B. Effective reversible potential, energy loss, and overpotential on platinum fuel cell cathodes. J. Phys. Chem. C 115, 4076–4088 (2011).

    Article  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  52. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  53. Makov, G. & Payne, M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995).

    Article  Google Scholar 

  54. Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (21522508, 21427813, 21521004, 21533006, 21621091 and 21775127), “111” Project (B17027), Natural Science Foundation of Guangdong Province (2016A030308012), the Fundamental Research Funds for the Central Universities (20720180037), and the Thousand Youth Talents Plan of China. Support from MINECO and Generalitat Valenciana (Spain), through projects CTQ2016–76221-P (AEI/FEDER, UE) and PROMETEOII/2014/013, respectively, is greatly acknowledged. V.B.-M. acknowledges MINECO for the award of a pre-doctoral grant (BES-2014–068176, project CTQ2013–44803-P). We thank H. Zhang, M. Su, Y. H. Wang, J. Cheng, G. Attard, B. Ren, Z.Y. Zou, B.A. Lu and X.D. Yang for discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.-C.D., V.B.-M. and J.Y. carried out the experiments. X.-G.Z., X.J. and D.-Y.W. conducted the DFT calculations. S.C. and Z.-L.Y. conducted the FDTD simulations. J.M.F, C.T.W, J.-F.L. and Z.-Q.T. designed the experiments. All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Juan Miguel Feliu or Jian-Feng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–14, Supplementary Figures 1–25, Supplementary Tables 1–6, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, JC., Zhang, XG., Briega-Martos, V. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat Energy 4, 60–67 (2019). https://doi.org/10.1038/s41560-018-0292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0292-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing