Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers


Multi-junction all-perovskite tandem solar cells are a promising choice for next-generation solar cells with high efficiency and low fabrication cost. However, the lack of high-quality low-bandgap perovskite absorber layers seriously hampers the development of efficient and stable two-terminal monolithic all-perovskite tandem solar cells. Here, we report a bulk-passivation strategy via incorporation of chlorine, to enlarge grains and reduce electronic disorder in mixed tin–lead low-bandgap (~1.25 eV) perovskite absorber layers. This enables the fabrication of efficient low-bandgap perovskite solar cells using thick absorber layers (~750 nm), which is a requisite for efficient tandem solar cells. Such improvement enables the fabrication of two-terminal all-perovskite tandem solar cells with a champion power conversion efficiency of 21% and steady-state efficiency of 20.7%. The efficiency is retained to 85% of its initial performance after 80 h of operation under continuous illumination.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Photovoltaic performance of low-Eg solar cells.
Fig. 2: Characterization of (FASnI3)0.6(MAPbI3)0.4 perovskite films with 0.0% Cl and 2.5% Cl.
Fig. 3: Device schematic and performance of the 2T all-perovskite tandem cell.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  2. 2.

    Shin, S. S. et al. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167–171 (2017).

    Article  Google Scholar 

  3. 3.

    Best Research-Cell Efficiencies (NREL, 2018); https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-07-17-2018.pdf.

  4. 4.

    Malinkiewicz, O. et al. Perovskite solar cells employing organic charge-transport layers. Nat. Photon. 8, 128–132 (2014).

    Article  Google Scholar 

  5. 5.

    McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  Google Scholar 

  6. 6.

    Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  Google Scholar 

  7. 7.

    Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).

    Article  Google Scholar 

  8. 8.

    Eperon, G. E. et al. Perovskite–perovskite tandem photovoltaics with optimized bandgaps. Science 354, 861–865 (2016).

    Article  Google Scholar 

  9. 9.

    Anaya, M., Lozano, G., Calvo, M. E. & Míguez, H. ABX3 perovskites for tandem solar cells. Joule 1, 769–793 (2017).

    Article  Google Scholar 

  10. 10.

    Werner, J. et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett. 1, 474–480 (2016).

    Article  Google Scholar 

  11. 11.

    Fu, F. et al. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nat. Commun. 6, 8932 (2015).

    Article  Google Scholar 

  12. 12.

    Forgács, D. et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7, 1602121 (2017).

    Article  Google Scholar 

  13. 13.

    Rajagopal, A. et al. Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 29, 1702140 (2017).

    Article  Google Scholar 

  14. 14.

    Eperon, G. E., Hörantner, M. T. & Snaith, H. J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1, 0095 (2017).

    Article  Google Scholar 

  15. 15.

    Song, Z. et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297–1305 (2017).

    Article  Google Scholar 

  16. 16.

    Zhao, D. et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2, 17018 (2017).

    Article  Google Scholar 

  17. 17.

    Bu, T. et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 10, 2509–2515 (2017).

    Article  Google Scholar 

  18. 18.

    Huang, J., Yuan, Y., Shao, Y. & Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017).

    Article  Google Scholar 

  19. 19.

    Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    Article  Google Scholar 

  20. 20.

    Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

    Article  Google Scholar 

  21. 21.

    Shao, Y., Yuan, Y. & Huang, J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016).

    Article  Google Scholar 

  22. 22.

    Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).

    Article  Google Scholar 

  23. 23.

    Xiao, Z. et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014).

    Article  Google Scholar 

  24. 24.

    Zhao, D. et al. High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer. Adv. Energy Mater. 5, 1401855 (2015).

    Article  Google Scholar 

  25. 25.

    Wu, Y. et al. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 1, 16148 (2016).

    Article  Google Scholar 

  26. 26.

    Liao, W. et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138, 12360–12363 (2016).

    Article  Google Scholar 

  27. 27.

    Zhao, Y. & Zhu, K. CH3NH3Cl-assisted one-step solution growth of CH3NH3Pb3: structure, charge carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412–9418 (2014).

    Article  Google Scholar 

  28. 28.

    Yang, M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2, 17038 (2017).

    Article  Google Scholar 

  29. 29.

    Liao, W. et al. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28, 9333–9340 (2016).

    Article  Google Scholar 

  30. 30.

    Yang, B. et al. Enhancing ion migration in grain boundaries of hybrid organic–inorganic perovskites by chlorine. Adv. Funct. Mater. 27, 1700749 (2017).

    Article  Google Scholar 

  31. 31.

    Starr, D. E. et al. Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3− xClx layers: surface depletion and interface enrichment. Energy Environ. Sci. 8, 1609–1615 (2015).

    Article  Google Scholar 

  32. 32.

    Sadhanala, A. et al. Preparation of single-phase films of CH3NH3Pb(I1–xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5, 2501–2505 (2014).

    Article  Google Scholar 

  33. 33.

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  Google Scholar 

  34. 34.

    Zhao, B. et al. High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics. Adv. Mater. 29, 1604744 (2016).

    Article  Google Scholar 

  35. 35.

    Johnson, S. R. & Tiedje, T. Temperature dependence of the Urbach edge in GaAs. J. Appl. Phys. 78, 5609–5613 (1995).

    Article  Google Scholar 

  36. 36.

    Zanatta, A. R. & Chambouleyron, I. Absorption edge, band tails, and disorder of amorphous semiconductors. Phys. Rev. B 53, 3833–3836 (1996).

    Article  Google Scholar 

  37. 37.

    Burlingame, Q. et al. Centimetre-scale electron diffusion in photoactive organic heterostructures. Nature 554, 77 (2018).

    Article  Google Scholar 

  38. 38.

    Song, Z. et al. Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2–CH3NH3I–H2O system. Adv. Energy Mater. 6, 1600846 (2016).

    Article  Google Scholar 

  39. 39.

    Cheyns, D., Kim, M., Verreet, B. & Rand, B. P. Accurate spectral response measurements of a complementary absorbing organic tandem cell with fill factor exceeding the subcells. Appl. Phys. Lett. 104, 093302 (2014).

    Article  Google Scholar 

  40. 40.

    Yakimov, A. & Forrest, S. R. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Appl. Phys. Lett. 80, 1667–1669 (2002).

    Article  Google Scholar 

  41. 41.

    Che, X., Li, Y., Qu, Y. & Forrest, S. R. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nat. Energy 3, 422–427 (2018).

    Article  Google Scholar 

  42. 42.

    Hadipour, A. et al. Solution-processed organic tandem solar cells. Adv. Funct. Mater. 16, 1897–1903 (2006).

    Article  Google Scholar 

  43. 43.

    Cao, J., Tao, S. X., Bobbert, P. A., Wong, C. P. & Zhao, N. Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 30, 1707350 (2018).

    Article  Google Scholar 

  44. 44.

    Christians, J. A. et al. Tailored interfaces of unencapsulated perovskite solar cells for > 1,000 hour operational stability. Nat. Energy 3, 68–74 (2018).

    Article  Google Scholar 

  45. 45.

    Leijtens, T., Prasanna, R., Gold-Parker, A., Toney, M. F. & McGehee, M. D. Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett. 2, 2159–2165 (2017).

    Article  Google Scholar 

  46. 46.

    Han, Y. et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139–8147 (2015).

    Article  Google Scholar 

  47. 47.

    Zhao, J. et al. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 9, 3650–3656 (2016).

    Article  Google Scholar 

  48. 48.

    Lee, H. & Lee, C. Analysis of ion-diffusion-induced interface degradation in inverted perovskite solar cells via restoration of the Ag electrode. Adv. Energy Mater. 8, 1702197 (2018).

    Article  Google Scholar 

  49. 49.

    Labban, A. E. et al. Improved efficiency in inverted perovskite solar cells employing a novel diarylamino-substituted molecule as PEDOT:PSS replacement. Adv. Energy Mater. 6, 1502101 (2016).

    Article  Google Scholar 

  50. 50.

    Yu, Y. et al. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells. ACS Energy Lett. 2, 1177–1182 (2017).

    Article  Google Scholar 

  51. 51.

    Zhao, D. et al. Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett. 3, 305–306 (2018).

    Article  Google Scholar 

  52. 52.

    Zhao, D. et al. Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers. Nano Energy 19, 88–97 (2016).

    Article  Google Scholar 

  53. 53.

    Jackson, W. B., Amer, N. M., Boccara, A. C. & Fournier, D. Photothermal deflection spectroscopy and detection. Appl. Opt. 20, 1333–1344 (1981).

    Article  Google Scholar 

  54. 54.

    Lee, J., Rovira, P. I., An, I. & Collins, R. W. Rotating-compensator multichannel ellipsometry: applications for real time Stokes vector spectroscopy of thin film growth. Rev. Sci. Instrum. 69, 1800–1810 (1998).

    Article  Google Scholar 

  55. 55.

    Johs, B. et al. Overview of variable angle spectroscopic ellipsometry (VASE), part II: advanced applications. In SPIE Proc. (ed. Al-Jumaily, G. A.) CR72, 29–58 (1999).

Download references


The work at University of Toledo is financially supported by the US Department of Energy SunShot Initiative under the Next Generation Photovoltaics 3 programme (DE-FOA-0000990) for perovskite tandem device fabrication, the Office of Naval Research under contract no. N00014-17-1-2223 for device characterization, the Air Force Research Laboratory under the Space Vehicles Directorate (FA9453-11-C-0253) for wide-bandgap perovskite synthesis and the Ohio Research Scholar Program for device modelling and understanding. The work at the National Renewable Energy Laboratory is supported by the US Department of Energy SunShot Initiative under the Next Generation Photovoltaics 3 programme (DE-FOA-0000990) and under contract no. DE-AC36-08-GO28308 with the Alliance for Sustainable Energy, the Manager and Operator of the National Renewable Energy Laboratory.

Author information




D.Z. and Y. Yan conceived the project. D.Z. carried out single-cell and tandem-cell fabrication and characterization. C.C. prepared wide-bandgap perovskite film and devices. C.W. fabricated and characterized the single low-bandgap device. Z.S. participated in tandem-cell fabrication and characterization and conducted transient photocurrent measurement and modelling. M.M.J., B.S. and N.J.P. conducted PDS and spectroscopic ellipsometry measurements. Y. Yu participated in wide-bandgap perovskite film and device fabrication. C.R.G. and C.L. helped with the characterization. D.Z., Z.S. and Y. Yan analysed the data and wrote the manuscript. K.Z. provided helpful discussions during the project and helped with the manuscript preparation. X.Z., G.F. and R.-G.X. helped with the manuscript preparation. All of the authors discussed the results and commented on the manuscript. Y. Yan supervised the project.

Corresponding authors

Correspondence to Dewei Zhao or Yanfa Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–14, Supplementary Tables 1–3, Supplementary Methods, Supplementary References

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Chen, C., Wang, C. et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat Energy 3, 1093–1100 (2018). https://doi.org/10.1038/s41560-018-0278-x

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing