Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers

Abstract

Ammonia is a promising carbon-free energy carrier, but is currently synthesized industrially under harsh conditions. Synthesizing ammonia using lower temperatures and pressures could therefore improve its prospects as a chemical means to store and transport energy. Here we report that alkali and alkaline earth metal imides function as nitrogen carriers that mediate ammonia production via a two-step chemical looping process operating under mild conditions. Nitrogen is first fixed through the reduction of N2 by alkali or alkaline earth metal hydrides to form imides and, subsequently, the imides are hydrogenated to produce NH3 and regenerate the metal hydrides. The oxidation state of hydrogen therefore switches between −1 (hydride), 0 (H2) and +1 (imide and NH3). Late 3d metals accelerate the reaction rates of both steps. The chemical loop mediated by BaNH and catalysed by Ni produces NH3 at 100 °C and atmospheric pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical looping processes for ammonia synthesis.
Fig. 2: Thermodynamic analyses of steps I and II in AH-CL.
Fig. 3: Nitridation of hydride samples and hydrogenation of post-nitridized samples.
Fig. 4: Nitridation and hydrogenation of TM–AH samples.
Fig. 5: Kinetic measurements of N2 fixation and hydrogenation of BaH2-CL.
Fig. 6: Performances of Ni–BaH2 (LiH) for ammonia production.
Fig. 7: Conceptual set-up for sustainable ammonia synthesis via AH-CL.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other finding of this study are available from the corresponding author upon reasonable request.

References

  1. Nørskov, J. & Chen, J. G. Sustainable Ammonia Synthesis (DOE Roundtable Report, 2016).

  2. Philibert, C. Renewable Energy for Industry: From Green Energy to Green Materials and Fuels (IEA Report, 2017).

  3. Guo, J. & Chen, P. Catalyst: NH3 as an energy carrier. Chem 3, 709–712 (2017).

    Article  Google Scholar 

  4. Zhu, D., Zhang, L. H., Ruther, R. E. & Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12, 836–841 (2013).

    Article  Google Scholar 

  5. Li, H., Shang, J., Ai, Z. H. & Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 137, 6393–6399 (2015).

    Article  Google Scholar 

  6. Medford, A. J. & Hatzell, M. C. Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catal. 7, 2624–2643 (2017).

    Article  Google Scholar 

  7. Licht, S. et al. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 345, 637–640 (2014).

    Article  Google Scholar 

  8. Chen, S. et al. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem. Int. Ed. 56, 2699–2703 (2017).

    Article  Google Scholar 

  9. Bao, D. et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2 /NH3 cycle. Adv. Mater. 29, 1604799 (2017).

    Article  Google Scholar 

  10. Kyriakou, V., Garagounis, I., Vasileiou, E., Vourros, A. & Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 286, 2–13 (2017).

    Article  Google Scholar 

  11. Gálvez, M. E., Halmann, M. & Steinfeld, A. Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 1. thermodynamic, environmental, and economic analyses. Ind. Eng. Chem. Res. 46, 2042–2046 (2007).

    Article  Google Scholar 

  12. Michalsky, R. & Pfromm, P. H. Chromium as reactant for solar thermochemical synthesis of ammonia from steam, nitrogen, and biomass at atmospheric pressure. Sol. Energy 85, 2642–2654 (2011).

    Article  Google Scholar 

  13. Michalsky, R., Parman, B. J., Amanor-Boadu, V. & Pfromm, P. H. Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses. Energy 42, 251–260 (2012).

    Article  Google Scholar 

  14. Michalsky, R., Pfromm, P. H. & Steinfeld, A. Rational design of metal nitride redox materials for solar-driven ammonia synthesis. Interface Focus 5, 20140084 (2015).

    Article  Google Scholar 

  15. McEnaney, J. M. et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ. Sci. 10, 1621–1630 (2017).

    Article  Google Scholar 

  16. Anheden, M. & Svedberg, G. Exergy analysis of chemical-looping combustion systems. Energy Convers. Manag. 39, 1967–1980 (1998).

    Article  Google Scholar 

  17. Fan, L.-S. Chemical Looping Systems for Fossil Energy Conversions (John Wiley & Sons, Hoboken, 2011).

  18. Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P. & de Diego, L. F. Progress in chemical-looping combustion and reforming technologies. Prog. Energ. Combust. 38, 215–282 (2012).

    Article  Google Scholar 

  19. Bertuccioli, L. et al. Development of Water Electrolysis in the European Union (Fuel Cells and Hydrogen Joint Undertaking, 2014).

  20. Ertl, G. Surface science and catalysis—studies on the mechanism of ammonia synthesis: the P. H. Emmett Award Address. Catal. Rev. 21, 201–223 (1980).

    Article  Google Scholar 

  21. Schlögl, R. in Handbook of Heterogeneous Catalysis (eds Ertl, G. et al.) Ch. 12.1 (Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, 2008).

  22. Pfromm, P. H. Towards sustainable agriculture: fossil-free ammonia. J. Renew. Sustain. Ener. 9, 034702 (2017).

    Article  Google Scholar 

  23. Jennings, J. R. (ed.) Catalytic Ammonia Synthesis: Fundamentals and Practice (Springer, New York, 1991).

    Google Scholar 

  24. Michalsky, R., Avram, A. M., Peterson, B. A., Pfromm, P. H. & Peterson, A. A. Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage. Chem. Sci. 6, 3965–3974 (2015).

    Article  Google Scholar 

  25. Laassiri, S., Zeinalipour-Yazdi, C. D., Catlow, C. R. A. & Hargreaves, J. S. J. The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping. Appl. Catal. B 223, 60–66 (2018).

    Article  Google Scholar 

  26. Chen, P., Xiong, Z., Luo, J., Lin, J. & Tan, K. L. Interaction of hydrogen with metal nitrides and imides. Nature 420, 302–304 (2002).

    Article  Google Scholar 

  27. Grochala, W. & Edwards, P. P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev. 104, 1283–1316 (2004).

    Article  Google Scholar 

  28. Orimo, S., Nakamori, Y., Eliseo, J. R., Züttel, A. & Jensen, C. M. Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111–4132 (2007).

    Article  Google Scholar 

  29. He, T., Pachfule, P., Wu, H., Xu, Q. & Chen, P. Hydrogen carriers. Nat. Rev. Mater. 1, 16059 (2016).

    Article  Google Scholar 

  30. Gao, W. et al. Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: a case study of cobalt. ACS Catal. 7, 3654–3661 (2017).

    Article  Google Scholar 

  31. Ichikawa, T., Isobe, S., Hanada, N. & Fujii, H. Lithium nitride for reversible hydrogen storage. J. Alloy. Compd. 365, 271–276 (2004).

    Article  Google Scholar 

  32. Zhang, J. & Hu, Y. H. Intermediate species and kinetics of lithium imide decomposition. Int. J. Hydrog. Energy 37, 10467–10472 (2012).

    Article  Google Scholar 

  33. David, W. I. F. et al. A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. J. Am. Chem. Soc. 129, 1594–1601 (2007).

    Article  Google Scholar 

  34. Verbraeken, M. C., Cheung, C., Suard, E. & Irvine, J. T. S. High H- ionic conductivity in barium hydride. Nat. Mater. 14, 95–100 (2015).

    Article  Google Scholar 

  35. Hagen, S. et al. New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon. Chem. Commun. 11, 1206–1207 (2002).

    Article  Google Scholar 

  36. Kojima, R. & Aika, K. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 2. Kinetic study. Appl. Catal. A 218, 121–128 (2001).

    Article  Google Scholar 

  37. Liu, C. Y. & Aika, K. Ammonia absorption into alkaline earth metal halide mixtures as an ammonia storage material. Ind. Eng. Chem. Res. 43, 7484–7491 (2004).

    Article  Google Scholar 

  38. Sørensen, R. Z. et al. Indirect, reversible high-density hydrogen storage in compact metal ammine salts. J. Am. Chem. Soc. 130, 8660–8668 (2008).

    Article  Google Scholar 

  39. Walker, G. Solid-state Hydrogen Storage: Materials and Chemistry (CRC Press, Boca Raton, 2008).

  40. Aika, K. & Tamaru, K. Ammonia: Catalysis and Manufacture (Springer, Heidelberg, 1995).

  41. Wang, P. K. et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 9, 64–71 (2017).

    Google Scholar 

  42. Takagi, S. & Orimo, S. Recent progress in hydrogen-rich materials from the perspective of bonding flexibility of hydrogen. Scr. Mater. 109, 1–5 (2015).

    Article  Google Scholar 

  43. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  Google Scholar 

  44. Uysal, M., Karslioglu, R., Alp, A. & Akbulut, H. The preparation of core-shell Al2O3/Ni composite powders by electroless plating. Ceram. Int. 39, 5485–5493 (2013).

    Article  Google Scholar 

  45. Aika, K., Takano, T. & Murata, S. Preparation and characterization of chlorine-free ruthenium catalysts and the promoter effect in ammonia-synthesis. 3. A magnesia-supported ruthenium catalyst. J. Catal. 136, 126–140 (1992).

    Article  Google Scholar 

  46. Mckay, D., Gregory, D. H., Hargreaves, J. S. J., Hunter, S. M. & Sun, X. L. Towards nitrogen transfer catalysis: reactive lattice nitrogen in cobalt molybdenum nitride. Chem. Commun. 2007 3051–3053 (2007).

  47. Sato, K. et al. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis. Chem. Sci. 8, 674–679 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from National Natural Science Foundation of China (Grant Nos. 21633011 and 21603220), Sino-Japanese Research Cooperative Program of Ministry of Science and Technology (2016YFE0118300), DICP (DICP DMTO201504), Youth Innovation Promotion Association CAS (No. 2018213) and Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM).

Author information

Authors and Affiliations

Authors

Contributions

P.C. conceived the research and wrote the paper. J.G. coordinated the experimental work. W.G. performed the synthesis, characterization and ammonia production rate measurements of the materials. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jianping Guo or Ping Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Figures 1–10, Supplementary Tables 1–4, Supplementary references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Guo, J., Wang, P. et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat Energy 3, 1067–1075 (2018). https://doi.org/10.1038/s41560-018-0268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0268-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing