Analysis | Published:

Virtual water transfers of the US electric grid

Nature Energyvolume 3pages11151123 (2018) | Download Citation

Abstract

Water is consumed in the generation of electricity and then transmitted, virtually, across the electric grid, creating a network of water transfers. Virtual water transfers of electricity are an understudied area of the energy–water nexus, with important policy and conservation considerations. Here we analyse the virtual water flows of the US electric grid and the changes in network structure from 2010 to 2016 using electricity transfers between power control areas and power-plant-level water for electricity. Transfers of blue water were 9.21 km3 in 2010 and 11.21 km3 in 2016. Transfers of grey water were 50.18 km3 in 2010 compared to 71.64 km3 in 2016. The change in blue water transfers are despite national trends of lower freshwater demands of thermoelectric power generation. We provide a mapping of virtual water transfers through the US electric grid over time, including blue and grey water, and network analysis of the system.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

All data utilized within this study are publicly available through the US Energy Information Administration, US Environmental Protection Agency, or the US Federal Energy Regulatory Committee. The Supplementary Information contains datasets generated through the methodology relevant to the analysis and creation of plots. Any other data that support the plots within this paper and other findings of this study are available from the corresponding author upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 06 March 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Kodra, E., Sheldon, S., Dolen, R. & Zik, O. The North American electric grid as an exchange network: an approach for evaluating energy resource composition and greenhouse gas mitigation. Environ. Sci. Technol. 49, 13692–13698 (2015).

  2. 2.

    Averyt, K. et al. Freshwater Use by U.S. Power Plants: Electricity’s Thirst for a Precious Resource. A Report of the Energy and Water in a Warming World Initiative (Union of Concerned Scientists, 2011).

  3. 3.

    Maupin, M. A. et al. Estimated Use of Water in the United States in 2010 (US Geological Survey, 2014).

  4. 4.

    Mekonnen, M. & Hoekstra, A. The blue water footprint of electricity from hydropower. Hydrol. Earth Syst. Sci. 16, 179–187 (2012).

  5. 5.

    Destouni, G., Jaramillo, F. & Prieto, C. Hydroclimatic shifts driven by human water use for food and energy production. Nat. Clim. Change 3, 213–217 (2013).

  6. 6.

    Jaramillo, F. & Destouni, G. Local flow regulation and irrigation raise global human water consumption and footprint. Science 350, 1248–1251 (2015).

  7. 7.

    Jaramillo, F. & Destouni, G. Comment on ‘Planetary boundaries: guiding human development on a changing planet’. Science 348, 1217–1217 (2015).

  8. 8.

    Liu, J., Zhao, D., Gerbens-Leenes, P. W. & Guan, D. China’s rising hydropower demand challenges water sector. Sci. Rep. 5, 11446 (2015).

  9. 9.

    Grubert, E. A. Water consumption from hydroelectricity in the United States. Adv. Water Resour. 96, 88–94 (2016).

  10. 10.

    Sanders, K. T. Critical review: uncharted waters? The future of the electricity–water nexus. Environ. Sci. Technol. 49, 51–66 (2015).

  11. 11.

    Grubert, E. & Sanders, K. T. Water use in the United States energy system: A national assessment and unit process inventory of water consumption and withdrawals. Environ. Sci. Technol. 52, 6695–6703 (2018).

  12. 12.

    Macknick, J., Newmark, R., Heath, G. & Hallett, K. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ. Res. Lett. 7, 045802 (2012).

  13. 13.

    Macknick, J., Sattler, S., Averyt, K., Clemmer, S. & Rogers, J. The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050. Environ. Res. Lett. 7, 045803 (2012).

  14. 14.

    Averyt, K. et al. Water use for electricity in the United States: an analysis of reported and calculated water use information for 2008. Environ. Res. Lett. 8, 015001 (2013).

  15. 15.

    Peer, R. A. & Sanders, K. T. Characterizing cooling water source and usage patterns across US thermoelectric power plants: a comprehensive assessment of self-reported cooling water data. Environ. Res. Lett. 11, 124030 (2016).

  16. 16.

    Tidwell, V. C., Bailey, M., Zemlick, K. M. & Moreland, B. D. Water supply as a constraint on transmission expansion planning in the western interconnection. Environ. Res. Lett. 11, 124001 (2016).

  17. 17.

    Lee, U., Han, J., Elgowainy, A. & Wang, M. Regional water consumption for hydro and thermal electricity generation in the United States. Appl. Energy 210, 661–672 (2017).

  18. 18.

    Wang, R., Zimmerman, J. B., Wang, C., Vivanco, D. F. & Hertwich, E. G. Freshwater vulnerability beyond local water stress: heterogenous effects of water–electricity nexus across the Continental United States. Environ. Sci. Technol. 51, 9899–9910 (2017).

  19. 19.

    Fthenakis, V. & Kim, H. C. Life-cycle uses of water in US electricity generation. Renew. Sustainable Energy Rev. 14, 2039–2048 (2010).

  20. 20.

    Herath, I., Deurer, M., Horne, D., Singh, R. & Clothier, B. The water footprint of hydroelectricity: a methodological comparison from a case study in New Zealand. J. Clean. Prod. 19, 1582–1589 (2011).

  21. 21.

    Mekonnen, M., Gerbens-Leenes, P. W. & Hoekstra, A. The consumptive water footprint of electricity and heat: A global assessment. Environ. Sci. Water Res. Technol. 1, 285–297 (2015).

  22. 22.

    Zhang, X. et al. China’s coal-fired power plants impose pressure on water resources. J. Clean. Prod. 161, 1171–1179 (2017).

  23. 23.

    Solley, W. B., Pierce, R. R. & Perlman, H. A. Estimated Use of Water in the United States in 1995 (US Geological Survey, 1998).

  24. 24.

    Stillwell, A. S., Clayton, M. E. & Webber, M. E. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges. Environ. Res. Lett. 6, 034015 (2011).

  25. 25.

    Stillwell, A. S., King, C. W., Webber, M. E., Duncan, I. J. & Hardberger, A. The energy–water nexus in Texas. Ecol. Soc. 16, 2 (2011).

  26. 26.

    Grubert, E. A., Beach, F. C. & Webber, M. E. Can switching fuels save water? a life cycle quantification of freshwater consumption for Texas coal- and natural gas-fired electricity. Environ. Res. Lett. 7, 045801 (2012).

  27. 27.

    Peer, R. A. & Sanders, K. T. The water consequences of a transitioning US power sector. Appl. Energy 210, 613–622 (2017).

  28. 28.

    Hoekstra, A. Y. & Chapagain, A. K. Globalization of Water: Sharing the Planet’s Freshwater Resources (John Wiley & Sons, Malden, 2008).

  29. 29.

    Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

  30. 30.

    Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

  31. 31.

    Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Routledge, 2011).

  32. 32.

    Logan, L. H. & Stillwell, A. S. Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus. Appl. Energy 210, 434–450 (2018).

  33. 33.

    Lubega, W. N. & Stillwell, A. S. Maintaining electric grid reliability under hydrologic drought and heat wave conditions. Appl. Energy 210, 538–549 (2018).

  34. 34.

    Allan, J. A. Virtual water: a strategic resource. Ground Water 36, 545–547 (1998).

  35. 35.

    Konar, M. et al. Water for food: the global virtual water trade network. Water Resour. Res. 47, W05520 (2011).

  36. 36.

    Konar, M., Dalin, C., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Temporal dynamics of blue and green virtual water trade networks. Water Resour. Res. 48, W07509 (2012).

  37. 37.

    Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Evolution of the global virtual water trade network. Proc. Natl Acad. Sci. USA 109, 5989–5994 (2012).

  38. 38.

    Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. Recent history and geography of virtual water trade. PLoS One 8, e55825 (2013).

  39. 39.

    Shi, J., Liu, J. & Pinter, L. Recent evolution of China’s virtual water trade: analysis of selected crops and considerations for policy. Hydrol. Earth Syst. Sci. 18, 1349–1357 (2014).

  40. 40.

    Dang, Q., Lin, X. & Konar, M. Agricultural virtual water flows within the United States. Water Resour. Res. 51, 973–986 (2015).

  41. 41.

    Chini, C. M., Konar, M. & Stillwell, A. S. Direct and indirect urban water footprints of the United States. Water Resour. Res. 53, 316–327 (2017).

  42. 42.

    Marston, L., Konar, M., Cai, X. & Troy, T. J. Virtual groundwater transfers from overexploited aquifers in the United States. Proc. Natl Acad. Sci. USA 112, 8561–8566 (2015).

  43. 43.

    Chini, C. M., Schreiber, K. L., Barker, Z. A. & Stillwell, A. S. Quantifying energy and water savings in the US residential sector. Environ. Sci. Technol. 50, 9003–9012 (2016).

  44. 44.

    Cohen, E. & Ramaswami, A. The water withdrawal footprint of energy supply to cities. J. Ind. Ecol. 18, 26–39 (2014).

  45. 45.

    Ruddell, B. L., Adams, E. A., Rushforth, R. & Tidwell, V. C. Embedded resource accounting for coupled natural–human systems: An application to water resource impacts of the western US electrical energy trade. Water. Resources Res. 50, 7957–7972 (2014).

  46. 46.

    Bartos, M. D. & Chester, M. V. The conservation nexus: Valuing interdependent water and energy savings in Arizona. Environ. Sci. Technol. 48, 2139–2149 (2014).

  47. 47.

    Grubert, E. A. & Webber, M. E. Energy for water and water for energy on Maui Island, Hawaii. Environ. Res. Lett. 10, 064009 (2015).

  48. 48.

    DeNooyer, T. A., Peschel, J. M., Zhang, Z. & Stillwell, A. S. Integrating water resources and power generation: the energy–water nexus in Illinois. Appl. Energy 162, 363–371 (2016).

  49. 49.

    Ryan, N. A., Johnson, J. X. & Keoleian, G. A. Comparative assessment of models and methods to calculate grid electricity emissions. Environ. Sci. Technol. 50, 8937–8953 (2016).

  50. 50.

    Zhang, C. et al. Virtual scarce water embodied in inter-provincial electricity transmission in China. Appl. Energy 187, 438–448 (2017).

  51. 51.

    Liao, X., Zhao, X., Hall, W. & Guan, D. Categorising virtual water transfers through China’s electric power sector. Appl. Energy 226, 252–260 (2018).

  52. 52.

    Rushforth, R. R. & Ruddell, B. L. A spatially detailed blue water footprint of the United States economy. Hydrol. Earth Syst. Sci. 22, 3007–3032 (2018).

  53. 53.

    Kelley, S. & Pasqualetti, M. Virtual water from a vanishing river. J. Am. Water Works Ass. 105, E471–E479 (2013).

  54. 54.

    Zhang, C. et al. International energy trade impacts on water resource crises: An embodied water flows perspective. Environ. Res. Lett. 11, 074023 (2016).

  55. 55.

    Net Generation by Energy Source: Electric Utilities, 2006–2016 Table 3.2.a. (US Energy Information Administration, 2017); www.eia.gov/electricity/annual/html/epa_03_02_a.html

  56. 56.

    McCall, J., Macknick, J. & Hillman, D. Water-related Power Plant Curtailments: an Overview of Incidents and Contributing Factors (National Renewable Energy Laboratory, 2016); https://www.osti.gov/biblio/1338176

  57. 57.

    Chini, C. M. & Stillwell, A. S. The state of U.S. Urban water: data and the energy-water nexus. Water Resour. Res. 54, 1796–1811 (2018).

  58. 58.

    Beck, R. & Kelley, A. Waters and Water Rights (Lexis-Nexis, New York, 2009).

  59. 59.

    Christian-Smith, J. et al. A Twenty-first Century US Water Policy (Oxford University Press, 2012).

  60. 60.

    Ji, L., Jia, X., Chiu, A. & Xu, M. Global electricity trade network: structures and implications. PLoS One 11, e0160869 (2016).

  61. 61.

    Qu, S., Liang, S. & Xu, M. CO2 emissions embodied in interprovincial electricity transmissions in China. Environ. Sci. Technol. 51, 10893–10902 (2017).

  62. 62.

    Meldrum, J., Nettles-Anderson, S., Heath, G. & Macknick, J. Life cycle water use for electricity generation: a review and harmonization of literature estimates. Environ. Res. Lett. 8, 015031 (2013).

  63. 63.

    Yan, Y. et al. Impact of Future Climate Variability on ERCOT Thermoelectric Power Generation. Tech. Rep. 75723 (Argonne National Laboratory, 2013).

  64. 64.

    Cook, M. A., King, C. W., Davidson, F. T. & Webber, M. E. Assessing the impacts of droughts and heat waves at thermoelectric power plants in the United States using integrated regression, thermodynamic, and climate models. Energy Reports 1, 193–203 (2015).

  65. 65.

    Pereira-Cardenal, S. J. Water-energy modelling: adaptation to water scarcity. Nat. Energy 1, 16004 (2016).

  66. 66.

    Van Vliet, M. T., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6, 375–380 (2016).

  67. 67.

    Zheng, X., Wang, C., Cai, W., Kummu, M. & Varis, O. The vulnerability of thermoelectric power generation to water scarcity in China: current status and future scenarios for power planning and climate change. Appl. Energy 171, 444–455 (2016).

  68. 68.

    Behrens, P. et al. Climate change and the vulnerability of electricity generation to water stress in the European Union. Nat. Energy 2, 17114 (2017).

  69. 69.

    Liu, L., Hejazi, M., Li, H., Forman, B. & Zhang, X. Vulnerability of US thermoelectric power generation to climate change when incorporating state-level environmental regulations. Nat. Energy 2, 17109 (2017).

  70. 70.

    Hoekstra, A. Y. & Chapagain, A. K. In Integrated Assessment of Water Resources and Global Change (eds. Craswell, E. et al.) 35–48 (Springer, Dordrecht, 2006).

  71. 71.

    Zhao, X. et al. Burden shifting of water quantity and quality stress from megacity Shanghai. Water Resour. Res. 52, 6916–6927 (2016).

  72. 72.

    Electricity: Form EIA 923 (US Energy Information Administration, 2017); www.eia.gov/electricity/data/eia923/

  73. 73.

    Emissions & Generation Resource Integrated Database (eGRID) (US Environmental Protection Agency, 2017); www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid

  74. 74.

    Form no. 714 - Annual Electric Balancing Authority Area and Planning Area Report (US Federal Energy Reulatory Commission, 2017); www.ferc.gov/docs-filing/forms/form-714/data.asp

  75. 75.

    Hines, P., Cotilla-Sanchez, E. & Blumsack, S. Do topological models provide good information about electricity infrastructure vulnerability? Chaos 20, 033122 (2010).

  76. 76.

    Bompard, E., Wu, D. & Xue, F. Structural vulnerability of power systems: a topological approach. Electr. Pow. Syst. Res. 81, 1334–1340 (2011).

  77. 77.

    Wilson, W., Leipzig, T. & Griffths-Sattenspiel, B. Burning Our Rivers: The Water Footprint of Electricity (River Network, Portland, 2012).

Download references

Acknowledgements

C.M.C. was supported by the National Science Foundation Graduate Research Fellowship. L.A.D. received funding from the University of Illinois at Urbana-Champaign Civil and Environmental Engineering Department Fellowship. W.N.L. received funding from the Institute for Sustainability, Energy, and Environment at the University of Illinois at Urbana-Champaign. The authors thank B. Freitag, who helped create the network visualizations.

Author information

Affiliations

  1. Department of Civil and Environmental Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA

    • Christopher M. Chini
    • , Lucas A. Djehdian
    • , William N. Lubega
    •  & Ashlynn S. Stillwell

Authors

  1. Search for Christopher M. Chini in:

  2. Search for Lucas A. Djehdian in:

  3. Search for William N. Lubega in:

  4. Search for Ashlynn S. Stillwell in:

Contributions

C.M.C., L.A.D., W.N.L. and A.S.S. formulated the study and wrote the manuscript. C.M.C. compiled the data, created figures and tables, and analysed the results. L.A.D. created the virtual water flow maps and provided results. W.N.L. provided analysis of the results. A.S.S. supervised the research.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Ashlynn S. Stillwell.

Supplementary information

  1. Supplementary figures

    Supplementary figures 1–11

  2. Supplementary tables

    Supplementary tables 1–10

  3. Supplementary Data 1

    This zip file contains the Matlab and R scripts required to perform the analysis presented in this paper. There are four files: computeAnnualStatisticsRevised.m, computeTransferMatrix.m, ComputeGreyWaterFootprints.R, ComputeUncertainties.R. The file computeAnnualStatisticsRevised.m uses the electricity transfer matrices and datasets in Supplementary tables 3–9 to create blue and grey water transfer matrices, network statistics and other relevant data. The file computeTransferMatrix.m uses the dataset in Supplementary table 2 to create a set of matrices of electricity transfers, where one matrix corresponds to a single year of transfers (2010–2016).The file ComputeGreyWaterFootprints.R adds a supplemented value of grey water footprint to United States Energy Information Administration (EIA) form 923 using the methods described in the paper. The script relies on the dataset in Supplementary table 10. It provides the input for computing uncertainties and eventual aggregation of blue and grey water at the principal component analysis (PCA) level. The file ComputeUncertainties.R utilizes the supplemented EIA form 923 from the above R script to determine 25th percentile, median, and 75th percentile values of blue and grey water resources for each thermoelectric power plant. This script uses the methodology described in the main text and computes uncertainty based on all 12 months of the year. These data are used to compute a PCA-level water footprint.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41560-018-0266-1