Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis


Solid oxide fuel cells (SOFCs) are potentially the most efficient technology for direct conversion of hydrocarbons to electricity. While their commercial viability is greatest at operating temperatures of 300–500 °C, it is extremely difficult to run SOFCs on methane at these temperatures, where oxygen reduction and C–H activation are notoriously sluggish. Here we report a robust SOFC that enabled direct utilization of nearly dry methane (with ~3.5% H2O) at 500 °C (achieving a peak power density of 0.37 W cm−2) with no evidence of coking after ~550 h operation. The cell consists of a PrBa0.5Sr0.5Co1.5Fe0.5O5+δ nanofibre-based cathode and a BaZr0.1Ce0.7Y0.1Yb0.1O3–δ-based multifunctional anode coated with Ce0.90Ni0.05Ru0.05O2 (CNR) catalyst for reforming of CH4 to H2 and CO. The high activity and coking resistance of the CNR is attributed to a synergistic effect of cationic Ni and Ru sites anchored on the CNR surface, as confirmed by in situ/operando experiments and computations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structure and performance of an intermediate-temperature fuel cell.
Fig. 2: Catalytic performances of steam reforming on Ce0.90Ni0.05Ru0.05O2, Ce0.90Ni0.10O2 and Ce0.90Ru0.10O2 catalysts.
Fig. 3: Coordination environments of singly dispersed Ni atoms (Ni1) and Ru atoms (Ru1) of Ce0.90Ni0.05Ru0.05O2 during catalysis.
Fig. 4: AP-XPS analysis of singly dispersed Ni atoms (Ni1) and Ru atoms (Ru1) of Ce0.90Ni0.05Ru0.05O2 during catalysis.
Fig. 5: Understanding of reactions on the catalyst layer.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Liu, M., Lynch, M. E., Blinn, K., Alamgir, F. M. & Choi, Y. Rational SOFC material design: new advances and tools. Mater. Today 14, 534–546 (2011).

    Article  Google Scholar 

  2. 2.

    Shao, Z. et al. Electric power and synthesis gas co-generation from methane with zero waste gas emission. Angew. Chem. Int. Ed. 50, 1792–1797 (2011).

    Article  Google Scholar 

  3. 3.

    Shao, Z. & Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004).

    Article  Google Scholar 

  4. 4.

    Duan, C. et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349, 1321–1326 (2015).

    Article  Google Scholar 

  5. 5.

    Murray, E. P., Tsai, T. & Barnett, S. A. A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999).

    Article  Google Scholar 

  6. 6.

    Hashimoto, K., Watase, S. & Toukai, N. Reforming of methane with carbon dioxide over a catalyst consisting of ruthenium metal and cerium oxide supported on mordenite. Catal. Lett. 80, 147–152 (2002).

    Article  Google Scholar 

  7. 7.

    Derk, A. R., Moore, G. M., Sharma, S., McFarland, E. W. & Metiu, H. Catalytic dry reforming of methane on ruthenium-doped ceria and ruthenium supported on ceria. Top. Catal. 57, 118–124 (2014).

    Article  Google Scholar 

  8. 8.

    Safariamin, M., Tidahy, L. H., Abi-Aad, E., Siffert, S. & Aboukaïs, A. Dry reforming of methane in the presence of ruthenium-based catalysts. C. R. Chim. 12, 748–753 (2009).

    Article  Google Scholar 

  9. 9.

    Zhang, S., Muratsugu, S., Ishiguro, N. & Tada, M. Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane. ACS Catal. 3, 1855–1864 (2013).

    Article  Google Scholar 

  10. 10.

    Kambolis, A., Matralis, H., Trovarelli, A. & Papadopoulou, C. Ni/CeO2-ZrO2 catalysts for the dry reforming of methane. Appl. Catal. A 377, 16–26 (2010).

    Article  Google Scholar 

  11. 11.

    Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4844 (2004).

    Article  Google Scholar 

  12. 12.

    Jiang, S. P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges. Int. J. Hydrogen Energy 37, 449–470 (2012).

    Article  Google Scholar 

  13. 13.

    Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  14. 14.

    Zhi, M., Lee, S., Miller, N., Menzler, N. H. & Wu, N. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode. Energy Environ. Sci. 5, 7066–7071 (2012).

    Article  Google Scholar 

  15. 15.

    Lee, J. G., Park, J. H. & Shul, Y. G., Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm−2 at 550 °C. Nat Commun. 5, 4045 (2014).

  16. 16.

    Chen, Y. et al. A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells. Energy Environ. Sci. 10, 964–971 (2017).

    Article  Google Scholar 

  17. 17.

    Chen, Y. et al. A highly efficient and robust nanofiber cathode for solid oxide fuel cells. Adv. Energy Mater. 7, 1601890 (2017).

    Article  Google Scholar 

  18. 18.

    Chen, Y. et al. A highly efficient multi-phase catalyst dramatically enhances the rate of oxygen reduction. Joule 2, 938–949 (2018).

    Article  Google Scholar 

  19. 19.

    Tang, Y. et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nat. Commun. 9, 1231 (2018).

  20. 20.

    Zhang, S. R. et al. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 6, 7938 (2015).

  21. 21.

    Zhu, Y. et al. Catalytic conversion of carbon dioxide to methane on ruthenium–cobalt bimetallic nanocatalysts and correlation between surface chemistry of catalysts under reaction conditions and catalytic performances. ACS Catal. 2, 2403–2408 (2012).

    Article  Google Scholar 

  22. 22.

    Tao, F. F. et al. Understanding complete oxidation of methane on spinel oxides at a molecular level. Nat. Commun. 6, 7798 (2015).

  23. 23.

    Shan, J. J. et al. Conversion of methane to methanol with a bent mono(mu-oxo)dinickel anchored on the internal surfaces of micropores. Langmuir 30, 8558–8569 (2014).

    Article  Google Scholar 

  24. 24.

    Rainwater, B. H., Liu, M. & Liu, M. A more efficient anode microstructure for SOFCs based on proton conductors. Int. J. Hydrogen Energy 37, 18342–18348 (2012).

    Article  Google Scholar 

  25. 25.

    Zhu, W., Xia, C., Fan, J., Peng, R. & Meng, G. Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells. J. Power Sources 160, 897–902 (2006).

    Article  Google Scholar 

  26. 26.

    Somorjai, G. A. & Li, Y. Introduction of Surface Chemistry and Catalysis (Wiley-VCH, 2010).

  27. 27.

    Ertl, G. Reactions at Solid Surfaces (John Wiley & Sons, 2010).

  28. 28.

    Nguyen, L. & Tao, F. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis. Rev. Sci. Instrum. 87, 064101 (2016).

    Article  Google Scholar 

  29. 29.

    Nguyen, L. et al. Dual reactor for in situ/operando fluorescent mode XAS studies of sample containing low-concentration 3d or 5d metal elements. Rev. Sci. Instrum. 89, 054103 (2018).

    Article  Google Scholar 

  30. 30.

    Nguyen, L. & Tao, F. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy. Rev. Sci. Instrum. 89, 024102 (2018).

    Article  Google Scholar 

  31. 31.

    Anspoks, A., Kalinko, A., Kalendarev, R. & Kuzmin, A. Atomic structure relaxation in nanocrystalline NiO studied by EXAFS spectroscopy: Role of nickel vacancies. Phys. Rev. B 86, 174114 (2012).

    Article  Google Scholar 

  32. 32.

    Peck, M. A. & Langell, M. A. Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem. Mater. 24, 4483–4490 (2012).

    Article  Google Scholar 

  33. 33.

    Huang, P. C. et al. Oxidation triggered atomic restructures enhancing the electrooxidation activities of carbon supported platinum–ruthenium catalysts. CrystEngComm 16, 10066–10079 (2014).

    Article  Google Scholar 

  34. 34.

    Arikawa, T., Takasu, Y., Murakami, Y., Asakura, K. & Iwasawa, Y. Characterization of the structure of RuO2−IrO2/Ti electrodes by EXAFS. J. Phys. Chem. B 102, 3736–3741 (1998).

    Article  Google Scholar 

  35. 35.

    Yi, N. et al. Highly efficient Ni–Ce–O mixed oxide catalysts via gel-coprecipitation of oxalate precursors for catalytic combustion of methane. Chem. Lett. 34, 108–109 (2005).

    Article  Google Scholar 

  36. 36.

    Roh, H. S., Potdar, H. & Jun, K. W. Carbon dioxide reforming of methane over co-precipitated Ni–CeO2, Ni–ZrO2 and Ni–Ce–ZrO2 catalysts. Catal. Today 93, 39–44 (2004).

    Article  Google Scholar 

  37. 37.

    Chastain, J., King, R. C. & Moulder, J. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Physical Electronics Division, Perkin-Elmer Corporation Eden Prairie, Minnesota, 1992).

    Google Scholar 

  38. 38.

    Morgan, D. J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 47, 1072–1079 (2015).

    Article  Google Scholar 

  39. 39.

    Lustemberg, P. G. et al. Room-temperature activation of methane and dry re-forming with CO2 on Ni-CeO2(111) surfaces: effect of Ce3+ sites and metal–support interactions on C–H bond cleavage. ACS Catal. 6, 8184–8191 (2016).

    Article  Google Scholar 

  40. 40.

    Zhu, Y. et al. In situ surface chemistries and catalytic performances of ceria doped with palladium, platinum, and rhodium in methane partial oxidation for the production of syngas. ACS Catal. 3, 2627–2639 (2013).

    Article  Google Scholar 

  41. 41.

    Fung, V., Tao, F. F. & Jiang, D. E. General structure-reactivity relationship for oxygen on transition-metal oxides. J. Phys. Chem. Lett. 8, 2206–2211 (2017).

    Article  Google Scholar 

  42. 42.

    Takanabe, K. et al. Integrated in situ characterization of a molten salt catalyst surface: evidence of sodium peroxide and hydroxyl radical formation. Angew. Chem. Int. Ed. 56, 10403–10407 (2017).

    Article  Google Scholar 

  43. 43.

    Zhang, X. Y. et al. Complete oxidation of methane on NiO nanoclusters supported on CeO2 nanorods through synergistic effect. ACS Sustain. Chem. Eng. 6, 6467–6477 (2018).

    Article  Google Scholar 

  44. 44.

    Huang, W. X. et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate. Angew. Chem. Int. Ed. 55, 13441–13445 (2016).

    Article  Google Scholar 

  45. 45.

    Zhang, S. R. et al. In situ studies of surface of NiFe2O4 catalyst during complete oxidation of methane. Surf. Sci. 648, 156–162 (2016).

    Article  Google Scholar 

  46. 46.

    Elvington, M., Brown, J., Arachchige, S. M. & Brewer, K. J. Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection. J. Am. Chem. Soc. 129, 10644 (2007).

    Article  Google Scholar 

  47. 47.

    Ikarashi, K. et al. Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 with d(10) configuration. J. Phys. Chem. B 106, 9048–9053 (2002).

    Article  Google Scholar 

  48. 48.

    Iwase, A., Ng, Y. H., Ishiguro, Y., Kudo, A. & Amal, R. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 133, 11054–11057 (2011).

    Article  Google Scholar 

  49. 49.

    Inagaki, A. & Akita, M. Visible-light promoted bimetallic catalysis. Coord. Chem. Rev. 254, 1220–1239 (2010).

    Article  Google Scholar 

  50. 50.

    Yang, L. et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ. Science 326, 126–129 (2009).

    Article  Google Scholar 

  51. 51.

    Chen, Y. et al. A highly active, CO2-tolerant electrode for the oxygen reduction reaction. Energy Environ. Sci. 11, 2458–2466 (2018).

    Article  Google Scholar 

  52. 52.

    Liu, M., Ding, D., Bai, Y., He, T. & Liu, M. An efficient SOFC based on samaria-doped ceria (SDC) electrolyte. J. Electrochem. Soc. 159, B661–B665 (2012).

    Article  Google Scholar 

  53. 53.

    Sun, W., Shi, Z., Qian, J., Wang, Z. & Liu, W. In-situ formed Ce0.8Sm0.2O2−δ@Ba(Ce, Zr)1−x(Sm, Y)xO3−δ core/shell electron-blocking layer towards Ce0.8Sm0.2O2−δ-based solid oxide fuel cells with high open circuit voltages. Nano Energy 8, 305–311 (2014).

    Article  Google Scholar 

  54. 54.

    Chen, Y. et al. A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy 26, 90–99 (2016).

    Article  Google Scholar 

  55. 55.

    Tang, Y. et al. Transition of surface phase of cobalt oxide during CO oxidation. Phys. Chem. Chem. Phys. 20, 6440–6449 (2018).

    Article  Google Scholar 

  56. 56.

    Zhang, S. R. et al. Catalysis on singly dispersed Rh atoms anchored on an inert support. ACS Catal. 8, 110–121 (2018).

    Article  Google Scholar 

  57. 57.

    Zhang, X. Y. et al. C–C coupling on single-atom-based heterogeneous catalyst. J. Am. Chem. Soc. 140, 954–962 (2018).

    Article  Google Scholar 

  58. 58.

    Shan, J. J. et al. Tuning catalytic performance through a single or sequential post synthesis reaction(s) in a gas phase. ACS Catal. 7, 191–204 (2017).

    Article  Google Scholar 

  59. 59.

    Liu, J. J. et al. Tuning catalytic selectivity of oxidative catalysis through deposition of nonmetallic atoms in surface lattice of metal oxide. ACS Catal. 6, 4218–4228 (2016).

    Article  Google Scholar 

  60. 60.

    Nguyen, L. et al. Reduction of nitric oxide with hydrogen on catalysts of singly dispersed bimetallic sites Pt1Com and Pd1Con. ACS Catal. 6, 840–850 (2016).

    Article  Google Scholar 

  61. 61.

    Wang, L. et al. Catalysis and in situ studies of Rh1/Co3O4 nanorods in reduction of NO with H2. ACS Catal. 3, 1011–1019 (2013).

    Article  Google Scholar 

  62. 62.

    Zhang, S. R. et al. WGS catalysis and in situ studies of CoO1−x, PtCon/Co3O4, and PtmCom'/CoO1 x nanorod catalysts. J. Am. Chem. Soc. 135, 8283–8293 (2013).

    Article  Google Scholar 

  63. 63.

    Xu, Q. et al. Efficient removal of formaldehyde by nanosized gold on well-defined CeO2 nanorods at room temperature. Environ. Sci. Tech. 48, 9702–9708 (2014).

    Article  Google Scholar 

  64. 64.

    Yeh, J. & Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At. Data Nucl. Data Tables 32, 1–155 (1985).

    Article  Google Scholar 

  65. 65.

    Nguyen, L. & Tao, F. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis. Rev. Sci. Instrum. 87, 064101 (2016).

    Article  Google Scholar 

  66. 66.

    Mullins, D., Overbury, S. & Huntley, D. Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surf. Sci. 409, 307–319 (1998).

    Article  Google Scholar 

  67. 67.

    Dou, J. et al. Complete oxidation of methane on Co3O4/CeO2 nanocomposite: a synergic effect. Catal. Today 311, 48–55 (2018).

    Article  Google Scholar 

  68. 68.

    Wen, C. et al. Water-gas shift reaction on metal nanoclusters encapsulated in mesoporous ceria studied with ambient-pressure X-ray photoelectron spectroscopy. ACS Nano 6, 9305–9313 (2012).

    Article  Google Scholar 

  69. 69.

    Ye, Y. C. et al. The role of copper in catalytic performance of a Fe-Cu-Al-O catalyst for water gas shift reaction. Chem. Commun. 49, 4385–4387 (2013).

    Article  Google Scholar 

  70. 70.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron. Radiat. 12, 537–541 (2005).

    Article  Google Scholar 

  71. 71.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  72. 72.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  73. 73.

    Kresse, G. & Hafner, J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  Google Scholar 

  74. 74.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  Google Scholar 

  75. 75.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  76. 76.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  77. 77.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  78. 78.

    Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  Google Scholar 

  79. 79.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  80. 80.

    Michaelides, A. et al. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. J. Am. Chem. Soc. 125, 3704–3705 (2003).

    Article  Google Scholar 

  81. 81.

    Liu, Z. P. & Hu, P. General rules for predicting where a catalytic reaction should occur on metal surfaces: A density functional theory study of C–H and C–O bond breaking/making on flat, stepped, and kinked metal surfaces. J. Am. Chem. Soc. 125, 1958–1967 (2003).

    Article  Google Scholar 

  82. 82.

    Alavi, A., Hu, P., Deutsch, T., Silvestrelli, P. L. & Hutter, J. CO oxidation on Pt(111): An ab initio density functional theory study. Phys. Rev. Lett. 80, 3650–3653 (1998).

    Article  Google Scholar 

Download references


This work was supported by the US Department of Energy Advanced Research Projects Agency-Energy (ARPA-E) REBELS program under award no. DE-AR0000502 and the SECA Core Technology Program under award no. DE-FE0031201. The in situ/operando studies, preparation and evaluation of catalysts and the instrumentation of AP-XPS were support by the Catalysis program, Office of Basic Energy Sciences, US Department of Energy, under grant no. DE-SC0014561, and the Division of Chemistry of the NSF under award no.1462121. A part of XAS studies were done at beam line 8-ID (ISS) of the National Synchrotron Light Source II, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laborotary, under Contract No. DE-SC0012704. F.F.T and Y.T. acknowledged E. Stavitski for assistance in XAS experiments.

Author information




M.L. and F.F.T. conceived the concept and supervised the research. Y.C., B.d. and Y.T. contributed equally to this work. Y.C., S.Y. and L.Z. prepared the electrolyte powder. Y.C., B.d., B.Z. and J.H.K. synthesized and tested the cathode and oxygen reduction catalyst materials. Y.C., S.Y. and K.P. fabricated and tested anode-supported single cells with the anodes coated with methane reforming catalysts. Y.C. and Y.D. performed the microanalysis of the electrolyte, electrode and catalyst materials. F.F.T. conceived the concept of dual single-site catalysts of reforming methane to syngas and supervised the synthesis, test and characterization of the reforming catalyst. Y.T. and Y.W. synthesized, tested and characterized the catalysts. Z.W. and P.H. performed the DFT computations. Y.C., B.d., Y.T., F.F.T. and M.L. analysed all experimental data and wrote the paper.

Corresponding authors

Correspondence to Franklin Feng Tao or Meilin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes 1–24, Supplementary figures 1–20, Supplementary tables 1–2, Supplementary references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., deGlee, B., Tang, Y. et al. A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis. Nat Energy 3, 1042–1050 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing