Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration

Abstract

The discovery of more-efficient and stable water adsorbents for adsorption-driven chillers for cooling applications remains a challenge due to the low working capacity of water sorption, high regeneration temperature, low energy efficiency under given operating conditions and the toxicity risk of harmful working fluids for the state-of-the-art sorbents. Here we report the water-sorption properties of a porous zirconium carboxylate metal–organic framework, MIP-200, which features S-shaped sorption isotherms, a high water uptake of 0.39 g g−1 below P/P0 = 0.25, facile regeneration and stable cycling, and most importantly a notably high coefficient of performance of 0.78 for refrigeration at a low driving temperature (below 70 °C). A joint computational–experimental approach supports that MIP-200 may be a practical alternative to the current commercially available adsorbents for refrigeration when its water adsorption performance is combined with advantages such as the exceptional chemical and mechanical stability and the scalable synthesis that involves simple, cheap and green chemicals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure of MIP-200.
Fig. 2: Water-sorption performance of MIP-200 in comparison with other adsorbents.
Fig. 3: Simulation result of water adsorption process.
Fig. 4: Chemical stability of MIP-200 under various conditions.
Fig. 5: Mechanical resistance of MIP-200.

Similar content being viewed by others

Data availability

The X-ray crystallographic data for MIP-200 have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition number CCDC 1834834. These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk. Further data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Isaac, M. & van Vuuren, D. P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 37, 507–521 (2009).

    Article  Google Scholar 

  2. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    Article  Google Scholar 

  3. Ghafoor, A. & Munir, A. Worldwide overview of solar thermal cooling technologies. Renew. Sust. Energ. Rev. 43, 763–774 (2015).

    Article  Google Scholar 

  4. de Lange, M. F. et al. Adsorption-driven heat pumps: the potential of metal–organic frameworks. Chem. Rev. 115, 12205–12250 (2015).

    Article  Google Scholar 

  5. Enteria, N., Yoshino, H. & Mochida, A. Review of the advances in open-cycle absorption air-conditioning systems. Renew. Sust. Energ. Rev. 28, 265–289 (2013).

    Article  Google Scholar 

  6. Khadiran, T., Hussein, M. Z., Zainal, Z. & Rusli, R. Advanced energy storage materials for building applications and their thermal performance characterization: a review. Renew. Sust. Energ. Rev. 57, 916–928 (2016).

    Article  Google Scholar 

  7. Lizana, J., Chacartegui, R., Barrios-Padura, A. & Valverde, J. M. Advances in thermal energy storage materials and their applications towards zero energy buildings: a critical review. Appl. Energy 203, 219–239 (2017).

    Article  Google Scholar 

  8. Sapienza, A. et al. Adsorption chilling driven by low temperature heat: new adsorbent and cycle optimization. Appl. Therm. Eng. 32, 141–146 (2012).

    Article  Google Scholar 

  9. Aristov, Y. Concept of adsorbent optimal for adsorptive cooling/heating. Appl. Therm. Eng. 72, 166–175 (2014).

    Article  Google Scholar 

  10. Wu, W. et al. Comparisons of different working pairs and cycles on the performance of absorption heat pump for heating and domestic hot water in cold regions. Appl. Therm. Eng. 48, 349–358 (2012).

    Article  Google Scholar 

  11. de Lange, M. F. et al. Metal–organic frameworks in adsorption-driven heat pumps: the potential of alcohols as working fluids. Langmuir 31, 12783–12796 (2015).

    Article  Google Scholar 

  12. Krajnc, A. et al. Superior performance of microporous aluminophosphate with LTA topology in solar-energy storage and heat reallocation. Adv. Energy Mater. 7, 8 (2017).

    Article  Google Scholar 

  13. Freni, A. et al. SAPO-34 coated adsorbent heat exchanger for adsorption chillers. Appl. Therm. Eng. 82, 1–7 (2015).

    Article  Google Scholar 

  14. Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    Article  Google Scholar 

  15. Maurin, G., Serre, C., Cooper, A. & Ferey, G. The new age of MOFs and of their porous-related solids. Chem. Soc. Rev. 46, 3104–3107 (2017).

    Article  Google Scholar 

  16. Cadiau, A. et al. Design of hydrophilic metal organic framework water adsorbents for heat reallocation. Adv. Mater. 27, 4775–4780 (2015).

    Article  Google Scholar 

  17. Seo, Y. K. et al. Energy-efficient dehumidification over hierarchically porous metal–organic frameworks as advanced water adsorbents. Adv. Mater. 24, 806–810 (2012).

    Article  Google Scholar 

  18. Rieth, A. J., Yang, S., Wang, E. N. & Dinca, M. Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit. ACS Central Sci. 3, 668–672 (2017).

    Article  Google Scholar 

  19. AbdulHalim, R. G. et al. A fine-tuned metal–organic framework for autonomous indoor moisture control. J. Am. Chem. Soc. 139, 10715–10722 (2017).

    Article  Google Scholar 

  20. Sohail, M. et al. Synthesis of highly crystalline NH2-MIL-125 (Ti) with S-shaped water isotherms for adsorption heat transformation. Cryst. Growth Des. 17, 1208–1213 (2017).

    Article  Google Scholar 

  21. Permyakova, A. et al. Synthesis optimization, shaping, and heat reallocation evaluation of the hydrophilic metal–organic framework MIL-160(Al). ChemSusChem 10, 1419–1426 (2017).

    Article  Google Scholar 

  22. Kummer, H. et al. A functional full-scale heat exchanger coated with aluminum fumarate metal–organic framework for adsorption heat transformation. Ind. Eng. Chem. Res. 56, 8393–8398 (2017).

    Article  Google Scholar 

  23. Lenzen, D. et al. Scalable green synthesis and full-scale test of the metal–organic framework CAU-10-H for use in adsorption-driven chillers. Adv. Mater. 30, 1705869 (2018).

    Article  Google Scholar 

  24. Furukawa, H. et al. Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).

    Article  Google Scholar 

  25. Gordeeva, L. G., Solovyeva, M. V. & Aristov, Y. I. NH2-MIL-125 as a promising material for adsorptive heat transformation and storage. Energy 100, 18–24 (2016).

    Article  Google Scholar 

  26. Srikhirin, P., Aphornratana, S. & Chungpaibulpatana, S. A review of absorption refrigeration technologies. Renew. Sust. Energ. Rev. 5, 343–372 (2001).

    Article  Google Scholar 

  27. Lee, U. H., Valekar, A. H., Hwang, Y. K. & Chang, J.-S. in The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications (ed. Kaskel, S.) Ch. 18 (Wiley-VCH, Weinheim, 2016).

  28. Bai, Y. et al. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327–2367 (2016).

    Article  Google Scholar 

  29. Prat, D. et al. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 18, 288–296 (2016).

    Article  Google Scholar 

  30. Duran, D. et al. PROXIMA 2A—a new fully tunable micro-focus beamline for macromolecular crystallography. J. Phys. Conf. Ser. 425, 012005 (2013).

    Article  Google Scholar 

  31. Aristov, Y. I. Challenging offers of material science for adsorption heat transformation: a review. Appl. Therm. Eng. 50, 1610–1618 (2013).

    Article  Google Scholar 

  32. Mileo, P. G. M. et al. Highly efficient proton conduction in a three-dimensional titanium hydrogen phosphate. Chem. Mat. 29, 7263–7271 (2017).

    Article  Google Scholar 

  33. Borges, D. D. et al. Computational exploration of the water concentration dependence of the proton transport in the porous UiO-66(Zr)–(CO2H)2 metal–organic framework. Chem. Mat 29, 1569–1576 (2017).

    Article  Google Scholar 

  34. Borges, D. D. et al. Proton transport in a highly conductive porous zirconium-based metal–organic framework: molecular insight. Angew. Chem. Int. Ed. 55, 3919–3924 (2016).

    Article  Google Scholar 

  35. Chorowski, M. & Pyrka, P. Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration. Energy 92, 221–229 (2015).

    Article  Google Scholar 

  36. Elmegaard, B., Ommen, T. S., Markussen, M. & Iversen, J. Integration of space heating and hot water supply in low temperature district heating. Energy Build. 124, 255–264 (2016).

    Article  Google Scholar 

  37. Krause, S. et al. A stimuli-responsive zirconium metal–organic framework based on supermolecular design. Angew. Chem. Int. Ed. 56, 10676–10680 (2017).

    Article  Google Scholar 

  38. Jiang, J. et al. Superacidity in sulfated metal–organic framework-808. J. Am. Chem. Soc. 136, 12844–12847 (2014).

    Article  Google Scholar 

  39. Mouchaham, G. et al. A robust infinite zirconium phenolate building unit to enhance the chemical stability of Zr MOFs. Angew. Chem. Int. Ed. 54, 13297–13301 (2015).

    Article  Google Scholar 

  40. Guillerm, V. et al. A series of isoreticular, highly stable, porous zirconium oxide based metal–organic frameworks. Angew. Chem. Int. Ed. 51, 9267–9271 (2012).

    Article  Google Scholar 

  41. Yuan, S. et al. Stable metal-organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1704303 (2018).

    Article  Google Scholar 

  42. Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15 (2016).

    Article  Google Scholar 

  43. Bennett, T. D. & Cheetham, A. K. Amorphous metal–organic frameworks. Accounts Chem. Res. 47, 1555–1562 (2014).

    Article  Google Scholar 

  44. Wang, J., Evans, A. G., Dharmasena, K. & Wadley, H. N. G. On the performance of truss panels with Kagome cores. Int. J. Solids Struct. 40, 6981–6988 (2003).

    Article  Google Scholar 

  45. Zhang, Y. H., Qu, X. M. & Fang, D. N. Mechanical properties of two novel planar lattice structures. Int. J. Solids Struct. 45, 3751–3768 (2008).

    Article  Google Scholar 

  46. Gomez-Gualdron, D. A. et al. Computational design of metal–organic frameworks based on stable zirconium building units for storage and delivery of methane. Chem. Mat. 26, 5632–5639 (2014).

    Article  Google Scholar 

  47. Liu, T. F. et al. Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal–organic frameworks with high surface area. J. Am. Chem. Soc. 137, 413–419 (2015).

    Article  Google Scholar 

  48. VandeVondele, J. et al. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  Google Scholar 

  49. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4, 15–25 (2014).

    Article  Google Scholar 

  50. The CP2K Developers Group (accessed 1 August 2018); http://www.cp2k.org

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  52. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  53. Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004).

    Article  Google Scholar 

  54. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  Google Scholar 

  55. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  Google Scholar 

  56. Krack, M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114, 145–152 (2005).

    Article  Google Scholar 

  57. Hartwigsen, C., Goedecker, S. & Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998).

    Article  Google Scholar 

  58. Yang, Q. Y. & Zhong, C. L. Understanding hydrogen adsorption in metal–organic frameworks with open metal sites: a computational study. J. Phys. Chem. B 110, 655–658 (2006).

    Article  Google Scholar 

  59. Rappe, A. K. et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  Google Scholar 

  60. Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    Article  Google Scholar 

  61. Abascal, J. L. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).

    Article  Google Scholar 

  62. Vlugt, T. J. et al. Computing the heat of adsorption using molecular simulations: the effect of strong coulombic interactions. J. Chem. Theory Comput. 4, 1107–1118 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

S.W., G.M. and C.S. acknowledge the financial support of the European Community within the Seventh Framework Programme (FP7) under grant agreement no. 608490 (Project M4CO2). C.M.-C. and G.M. are grateful for financial support from Institut Universitaire de France (IUF). The Korean authors are grateful to the Global Frontier Center for Hybrid Interface Materials of Korea (GFHIM) (grant no. NRF-2013M3A6B1078879) and the National Research Council of Science & Technology (NST) of Korea (the R&D Convergence Program, Center for Convergent Chemical Process (CCP), CRC-14-1-KRICT) for financial support. E. Gkaniatsou and L. Zhou from the Institute of Porous Materials from Paris, and A. Orsi and P. Wright from the University of St Andrews are acknowledged for providing the MOF samples for the chemical stability tests under NH4OH vapour. J. W. Yoon, Y. K. Hwang, U-H. Lee and H. Wang are also acknowledged for their fruitful comments on adsorption and characterization experiments.

Author information

Authors and Affiliations

Authors

Contributions

S.W. contributed to the synthesis and general characterization of MIP-200 and contributed to the writing of the manuscript. M.W. performed the computational assisted structure determination of MIL-200, the calculation of the electronic energy for a series of Zr-based MOFs, the simulation of the water adsorption isotherms and the analysis of the mechanism in play, and he equally contributed to the writing of the manuscript. M.M. contributed to the characterization data collection and writing of the manuscript. A.T., J.M. and W.S. collected the synchrotron diffraction data on the single crystal and solved the crystal structure. C.M.-C. conducted the solid-state NMR characterizations. J.S.L. and K.H.C. collected water-sorption data. J.P. calculated the thermodynamic efficiency of MIP-200 for water sorption. J.-S.C. designed the study on water sorption, analysed data and led the writing of the manuscript. G.M. supervised the modelling part of this study and led the writing of the manuscript. C.S. coordinated the study and led the writing of the manuscript, and also closely supervised the synthesis and characterization part of the work.

Corresponding authors

Correspondence to Guillaume Maurin, Jong-San Chang or Christian Serre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures 1–40, Supplementary tables 1–5, Supplementary notes 1–3, Supplementary methods, Supplementary references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Lee, J.S., Wahiduzzaman, M. et al. A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration. Nat Energy 3, 985–993 (2018). https://doi.org/10.1038/s41560-018-0261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0261-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing