Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Solar-driven interfacial evaporation

Abstract

As a ubiquitous solar-thermal energy conversion process, solar-driven evaporation has attracted tremendous research attention owing to its high conversion efficiency of solar energy and transformative industrial potential. In recent years, solar-driven interfacial evaporation by localization of solar-thermal energy conversion to the air/liquid interface has been proposed as a promising alternative to conventional bulk heating-based evaporation, potentially reducing thermal losses and improving energy conversion efficiency. In this Review, we discuss the development of the key components for achieving high-performance evaporation, including solar absorbers, evaporation structures, thermal insulators and thermal concentrators, and discuss how they improve the performance of the solar-driven interfacial evaporation system. We describe the possibilities for applying this efficient solar-driven interfacial evaporation process for energy conversion applications. The exciting opportunities and challenges in both fundamental research and practical implementation of the solar-driven interfacial evaporation process are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Solar-driven evaporation through various forms of solar heating.
Fig. 2: Solar absorbers for solar-driven interfacial evaporation.
Fig. 3: Solar-driven interfacial evaporation structure.
Fig. 4: Progressive thermal insulation design for a solar-driven interfacial evaporation system.
Fig. 5: Evaporation efficiency for different solar-driven interfacial evaporation systems.
Fig. 6: Solar-driven interfacial evaporation under thermal concentration.
Fig. 7: Representative energy conversion applications enabled by solar-driven interfacial evaporation.

Similar content being viewed by others

References

  1. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, aad1920 (2016).

    Google Scholar 

  2. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  Google Scholar 

  3. Crabtree, G. W. & Lewis, N. S. Solar energy conversion. Phys. Today 60, 37–42 (2007).

    Google Scholar 

  4. Weinstein, L. A. et al. Concentrating solar power. Chem. Rev. 115, 12797–12838 (2015).

    Google Scholar 

  5. Kalogirou, S. A. Solar thermal collectors and applications. Prog. Energy Combust. Sci. 30, 231–295 (2004).

    Google Scholar 

  6. Roderick, M. L. & Farquhar, G. D. The cause of decreased pan evaporation over the past 50 years. Science 298, 1410–1411 (2002).

    Google Scholar 

  7. Ohmura, A. & Wild, M. Is the hydrological cycle accelerating? Science 298, 1345–1346 (2002).

    Google Scholar 

  8. Qiblawey, H. M. & Banat, F. Solar thermal desalination technologies. Desalination 220, 633–644 (2008).

    Google Scholar 

  9. Mills, D. Advances in solar thermal electricity technology. Sol. Energy 76, 19–31 (2004).

    Google Scholar 

  10. Neumann, O. et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl Acad. Sci. USA 110, 11677–11681 (2013).

    Google Scholar 

  11. Zarza, E. et al. Direct steam generation in parabolic troughs: final results and conclusions of the DISS project. Energy 29, 635–644 (2004).

    Google Scholar 

  12. Thirugnanasambandam, M., Iniyan, S. & Goic, R. A review of solar thermal technologies. Renew. Sust. Energ. Rev. 14, 312–322 (2010).

    Google Scholar 

  13. Bachhuber, C. Energy from evaporation of water. Am. J. Phys. 51, 259–264 (1983).

    Google Scholar 

  14. Cavusoglu, A. H., Chen, X., Gentine, P. & Sahin, O. Potential for natural evaporation as a reliable renewable energy resource. Nat. Commun. 8, 617 (2017). This paper identifies natural evaporation as a potential renewable energy source and quantitatively analyses the amount energy that can be harnessed from solar-driven evaporation.

    Google Scholar 

  15. Kabeel, A. E. & El-Agouz, S. A. Review of researches and developments on solar stills. Desalination 276, 1–12 (2011).

    Google Scholar 

  16. Otanicar, T. P., Phelan, P. E., Prasher, R. S., Rosengarten, G. & Taylor, R. A. Nanofluid-based direct absorption solar collector. J. Renew. Sustain. Energy 2, 033102 (2010).

    Google Scholar 

  17. Neumann, O. et al. Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2012).

    Google Scholar 

  18. Ni, G. et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17, 290–301 (2015).

    Google Scholar 

  19. Jin, H., Lin, G., Bai, L., Zeiny, A. & Wen, D. Steam generation in a nanoparticle-based solar receiver. Nano Energy 28, 397–406 (2016).

    Google Scholar 

  20. Hisatake, K., Tanaka, S. & Aizawa, Y. Evaporation rate of water in a vessel. J. Appl. Phys. 73, 7395–7401 (1993).

    Google Scholar 

  21. Prasher, R., Phelan, P. E. & Bhattacharya, P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 6, 1529–1534 (2006).

    Google Scholar 

  22. Ghadimi, A., Saidur, R. & Metselaar, H. S. C. A review of nanofluid stability properties and characterization in stationary conditions. Inter. J. Heat Mass Transf. 54, 4051–4068 (2011).

    Google Scholar 

  23. Chen, Y. et al. Stably dispersed high-temperature Fe3O4/silicone oil for direct solar thermal energy harvest. J. Mater. Chem. A 4, 17503–17511 (2016).

    Google Scholar 

  24. Yu, F. et al. Dispersion stability of thermal nanofluids. Prog. Nat. Sci. 27, 531–542 (2017).

    Google Scholar 

  25. Wang, Z. et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air–water interface. Small 10, 3234–3239 (2014). This paper is one of the first introducing the concept of localized evaporation at the air/water interface.

    Google Scholar 

  26. Ghasemi, H. et al. Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014). This paper is one of the first introducing the concept of localized evaporation at the air/water interface for steam generation.

    Google Scholar 

  27. Ni, G. et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 12126 (2016). This work systematically analyses the energy balance for solar-driven interfacial evaporation systems, and demonstrates the thermal concentration strategy to generate steam with the solar-driven interfacial evaporator under a low solar flux level.

    Google Scholar 

  28. Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393–398 (2016).

    Google Scholar 

  29. Zeng, Y. et al. Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy Environ. Sci. 4, 4074–4078 (2011).

    Google Scholar 

  30. Ito, Y. et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302–4307 (2015).

    Google Scholar 

  31. Hu, X. Z. et al. Tailoring graphene oxide based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29, 1604031 (2016).

    Google Scholar 

  32. Bae, K. et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).

    Google Scholar 

  33. Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016). This paper demonstrates that spherical plasmonic nanoparticles can be assembled into efficient broadband solar absorbers with high absorptance.

    Google Scholar 

  34. Wang, X., He, Y., Liu, X., Cheng, G. & Zhu, J. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl. Energy 195, 414–425 (2017).

    Google Scholar 

  35. Kuzmenko, A. B., Van Heumen, E., Carbone, F. & Van Der Marel, D. Universal optical conductance of graphite. Phys. Rev. Let. 100, 117401 (2008).

    Google Scholar 

  36. Xue, G. et al. Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces 9, 15052–15057 (2017).

    Google Scholar 

  37. Ma, S. et al. Recycled waste black polyurethane sponges for solar vapor generation and distillation. Appl. Energy 206, 63–69 (2017).

    Google Scholar 

  38. Wang, G. et al. Reduced graphene oxide-polyurethane nanocomposite foams as a reusable photo-receiver for efficient solar steam generation. Chem. Mater. 29, 5629–5935 (2017).

    Google Scholar 

  39. Li, Y. et al. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Adv. Mater. 29, 1700981 (2017).

    Google Scholar 

  40. Lou, J. et al. Bioinspired multifunctional paper-based RGO composites for solar-driven clean water generation. ACS Appl. Mater. Interfaces 8, 14628–14636 (2016).

    Google Scholar 

  41. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotech. 10, 25–34 (2015).

    Google Scholar 

  42. Richardson, H. et al. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 9, 1139–1146 (2009).

    Google Scholar 

  43. Hogan, N. J. et al. Nanoparticles heat through light localization. Nano Lett. 14, 4640–4645 (2014). This paper describes the achievement of interfacial evaporation using particles dispersed within a bulk solution.

    Google Scholar 

  44. Deng, Z. et al. The emergence of solar thermal utilization: solar-driven steam generation. J. Mater. Chem. A 5, 7691–7709 (2017).

    Google Scholar 

  45. Liu, Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768–2774 (2015).

    Google Scholar 

  46. Zhou, L. et al. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 32, 195–200 (2017).

    Google Scholar 

  47. Guler, U., Shalaev, V. M. & Boltasseva, A. Nanoparticle plasmonics: going practical with transition metal nitrides. Mater. Today 18, 227–237 (2015).

    Google Scholar 

  48. Ishii, S., Sugavaneshwar, R. P. & Nagao, T. Titanium nitride nanoparticles as plasmonic solar heat transducers. J. Phys. Chem. C 120, 2343–2348 (2015).

    Google Scholar 

  49. Cao, F., McEnaney, K., Chen, G. & Ren, Z. A review of cermet-based spectrally selective solar absorbers. Energy Environ. Sci. 7, 1615–1627 (2014).

    Google Scholar 

  50. Zhao, D. et al. Enhancing localized evaporation through separated light absorbing centers and scattering centers. Sci. Rep. 5, 17276 (2015).

    Google Scholar 

  51. Zhang, L., Tang, B., Wu, J., Li, R. & Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015).

    Google Scholar 

  52. Liu, Y., Chen, J., Guo, D., Cao, M. & Jiang, L. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface. ACS Appl. Mater. Interfaces 7, 13645–13652 (2015).

    Google Scholar 

  53. Yu, S. et al. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Sci. Rep. 5, 13600 (2015). This work investigates the influence of surface chemistry on both sides of the evaporator on solar-driven evaporation behaviour and performance.

    Google Scholar 

  54. Li, X. Q. et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl Acad. Sci. USA 113, 13953–13958 (2016). By introducing separate hydrophilic cellulose to wick water towards the evaporating surface, the solar-driven interfacial evaporator design reported in this paper decouples the control over water supply and thermal insulation.

    Google Scholar 

  55. Osborne, N. S., Stimson, H. F. & Ginnings, D. C. Measurements of heat capacity and heat of vaporization of water in the range of 0° to 100° C. J. Res. Natl Bur. Stand. 23, 197–260 (1939).

    Google Scholar 

  56. Wang, Z. et al. Paper-based membrane on silicone floater for efficient and fast solar-driven interfacial evaporation under one sun. J. Mater. Chem. A 5, 16359–16368 (2017).

    Google Scholar 

  57. Shang, W. & Deng, T. Solar steam generation: steam by thermal concentration. Nat. Energy 1, 16133 (2016).

    Google Scholar 

  58. Dongare, P. D. et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl Acad. Sci. USA 114, 6936–6941 (2017).

    Google Scholar 

  59. Liu, Z. et al. Extremely cost‐effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Global Chall. 1, 1600006 (2017).

    Google Scholar 

  60. Ni, G. et al. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11, 1510–1519 (2018). This work demonstrates a salt-rejecting interfacial evaporation design to enable stable and continuous outdoor solar desalination on ocean.

    Google Scholar 

  61. Khawaji, A. D., Kutubkhanah, I. K. & Wie, J. M. Advances in seawater desalination technologies. Desalination 221, 47–69 (2008).

    Google Scholar 

  62. Chang, C. et al. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Appl. Mater. Interfaces 8, 23412–23418 (2016).

    Google Scholar 

  63. Yang, P. et al. Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10, 1923–1927 (2017).

    Google Scholar 

  64. Chen, X. et al. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat. Commun. 6, 7346 (2014). By coupling with the humidity-controlled engines, this work highlights the potential to convert evaporation energy into electrical and mechanical energy with a useful level of power.

    Google Scholar 

  65. Varghese, O. K., Paulose, M., LaTempa, T. J. & Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731–737 (2009).

    Google Scholar 

  66. Liu, Y. et al. Bioinspired bifunctional bembrane for efficient clean water generation. ACS Appl. Mater. Interfaces 8, 772–779 (2016).

    Google Scholar 

  67. Chun, W., Kang, Y. H., Kwak, H. Y. & Lee, Y. S. An experimental study of the utilization of heat pipes for solar water heaters. Appl. Therm. Eng. 19, 807–817 (1999).

    Google Scholar 

  68. Sajadi, S. M., Farokhnia, N., Irajizad, P., Hasnain, M. & Ghasemi, H. Flexible artificially networked structure for ambient/high pressure solar steam generation. J. Mater. Chem. A 4, 4700–4705 (2016).

    Google Scholar 

  69. Xue, G. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotech. 12, 317–321 (2017).

    Google Scholar 

  70. Ding, T. et al. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 27, 1700551 (2017).

    Google Scholar 

  71. Gao, F., Li, W., Wang, X., Fang, X. & Ma, M. A self-sustaining pyroelectric nanogenerator driven by water vapor. Nano Energy 22, 19–26 (2016).

    Google Scholar 

  72. Lee, M. T. et al. Hydrogen production with a solar steam-methanol reformer and colloid nanocatalyst. Int. J. Hydrog. Energy 35, 118–126 (2010).

    Google Scholar 

  73. Ravaghi-Ardebili, Z., Manenti, F., Corbetta, M., Pirola, C. & Ranzi, E. Biomass gasification using low-temperature solar-driven steam supply. Renew. Energy 74, 671–680 (2015).

    Google Scholar 

  74. Lin, Z. et al. A floating sheet for efficient photocatalytic water splitting. Adv. Energy Mater. 6, 1600510 (2016).

    Google Scholar 

  75. Wheeler, T. D. & Stroock, A. D. The transpiration of water at negative pressures in a synthetic tree. Nature 455, 208–212 (2008).

    Google Scholar 

  76. Tao, P. et al. Bioinspired engineering of thermal materials. Adv. Mater. 27, 428–463 (2015).

    Google Scholar 

  77. Zhu, M. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8, 1701028 (2018).

    Google Scholar 

  78. Liu, K. K. et al. Wood–graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces 9, 7675–7681 (2017).

    Google Scholar 

  79. Chen, C. et al. Highly flexible and efficient solar steam generation device. Adv. Mater. 29, 1701756 (2017).

    Google Scholar 

  80. Zhu, M. et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 29, 1704107 (2017).

    Google Scholar 

  81. Liu, H. et al. High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv. Energy Mater. 8, 1701616 (2018).

    Google Scholar 

  82. Gan, Z. et al. Photothermal contribution to enhanced photocatalytic performance of graphene-based nanocomposites. ACS Nano 8, 9304–9310 (2014).

    Google Scholar 

  83. Zhu, G., Xu, J., Zhao, W. & Huang, F. Constructing black titania with unique nanocage structure for solar desalination. ACS Appl. Mater. Interfaces 8, 31716–31721 (2016).

    Google Scholar 

  84. Ye, M. et al. Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv. Energy Mater. 7, 1601081 (2016).

    Google Scholar 

  85. Wang, J. et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 1603730 (2016).

    Google Scholar 

  86. Neumann, O. et al. Combining solar steam processing and solar distillation for fully off-grid production of cellulosic bioethanol. ACS Energy Lett. 2, 8–13 (2017).

    Google Scholar 

  87. Jack, C. et al. Spatial control of chemical processes on nanostructures through nano-localized water heating. Nat. Commun. 7, 10946 (2016).

    Google Scholar 

  88. Hu, H. et al. Substrateless welding of self-assembled silver nanowires at air/water interface. ACS Appl. Mater. Interfaces 8, 20483–20490 (2016).

    Google Scholar 

  89. Neumann, O. et al. Nanoparticle-mediated, light-induced phase separations. Nano Lett. 15, 7880–7885 (2015).

    Google Scholar 

  90. Zhang, Y. et al. Floating rGO-based black membranes for solar driven sterilization. Nanoscale 9, 19384–19389 (2017).

    Google Scholar 

  91. Erickson, D., Sinton, D. & Psaltis, D. Optofluidics for energy applications. Nat. Photon. 5, 583–590 (2011).

    Google Scholar 

  92. Tian, Y. & Zhao, C. Y. A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 104, 538–553 (2013).

    Google Scholar 

  93. Wang, Z. et al. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage. Nat. Commun. 8, 1478 (2017).

    Google Scholar 

  94. Morciano, M. et al. Efficient steam generation by inexpensive narrow gap evaporation device for solar applications. Sci. Rep. 7, 11970 (2017).

    Google Scholar 

  95. Xu, W. et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8, 1702884 (2018).

    Google Scholar 

  96. Warsinger, D. M., Swaminathan, J., Guillen-Burrieza, E. & Arafat, H. A. Scaling and fouling in membrane distillation for desalination applications: a review. Desalination 356, 294–313 (2015).

    Google Scholar 

  97. Baker, J. S. & Dudley, L. Y. Biofouling in membrane systems—a review. Desalination 118, 81–89 (1998).

    Google Scholar 

  98. Henry, A. & Prasher, R. The prospect of high temperature solid state energy conversion to reduce the cost of concentrated solar power. Energy Environ. Sci. 7, 1819–1828 (2014).

    Google Scholar 

  99. Oelgemöller, M. Solar photochemical synthesis: from the beginnings of organic photochemistry to the solar manufacturing of commodity chemicals. Chem. Rev. 116, 9664–9682 (2016).

    Google Scholar 

Download references

Acknowledgements

P.T., C.S., W.S. and T.D. received financial support from the National Key R&D Program of China (Grant No. 2017YFB0406100), National Natural Science Foundation of China (Grant No. 51521004, 51420105009, 51403127 and 21401129), the ‘Chen Guang’ project from Shanghai Municipal Education Commission and Shanghai Education Development Foundation (Grant No. 15CG06) and Shanghai Rising-Star Program (Grant No: 18QA1402200). G.C. and G.N. received funding support from the MIT S3TEC Center, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-FG02-09ER46577 (for the experimental facility) and MIT J-WAFS Solutions Program (for water treatment). J.Z. received financial support from the National Key Research and Development Program of China (No. 2017YFA0205700), the State Key Program for Basic Research of China (Grant No. 2015CB659300) and National Natural Science Foundation of China (Grant No. 11621091, 11574143).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Zhu, Gang Chen or Tao Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, P., Ni, G., Song, C. et al. Solar-driven interfacial evaporation. Nat Energy 3, 1031–1041 (2018). https://doi.org/10.1038/s41560-018-0260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0260-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing