Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy


The poor performance of lithium-ion batteries in extreme temperatures is hindering their wider adoption in the energy sector. A fundamental challenge in battery thermal management systems (BTMSs) is that hot and cold environments pose opposite requirements: thermal transmission at high temperature for battery cooling, and thermal isolation at low temperature to retain the batteries’ internally generated heat, leading to an inevitable compromise of either hot or cold performances. Here, we demonstrate a thermal regulator that adjusts its thermal conductance as a function of the temperature, just as desired for the BTMS. Without any external logic control, this thermal regulator increases battery capacity by a factor of 3 at an ambient temperature (Tambient) of −20 °C in comparison to a baseline BTMS that is always thermally conducting, while also limiting the battery temperature rise to 5 °C in a very hot environment (Tambient = 45 °C) to ensure safety. The result expands the usability of lithium-ion batteries in extreme environments and opens up new applications of thermally functional devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: A passive thermal regulator concept for battery thermal management.
Fig. 2: Design and switching mechanism of the thermal regulator.
Fig. 3: Validation of the proposed thermal regulator in a high-vacuum environment.
Fig. 4: Demonstration of the thermal regulator with a module of two commercial 18650 LIBs.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  Google Scholar 

  2. Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015).

    Article  Google Scholar 

  3. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  Google Scholar 

  4. Yuksel, T. & Michalek, J. J. Effects of regional temperature on electric vehicle efficiency, range, and emissions in the United States. Environ. Sci. Technol. 49, 3974–3980 (2015).

    Article  Google Scholar 

  5. Wang, Q., Jiang, B., Li, B. & Yan, Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew. Sust. Energ. Rev. 64, 106–128 (2016).

    Article  Google Scholar 

  6. Pesaran, A. A., Santhanagopalan, S. & Kim, G. H. Addressing the impact of temperature extremes on large format Li-ion batteries for vehicle applications. 30th Int. Battery Seminar PR-5400-58145 (2013).

  7. Keyser, M. et al. Enabling fast charging–battery thermal considerations. J. Power Sources 367, 228–236 (2017).

    Article  Google Scholar 

  8. Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716–720 (2013).

    Article  Google Scholar 

  9. Leng, F., Tan, C. M. & Pecht, M. Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci. Rep. 5, 12967 (2015).

    Article  Google Scholar 

  10. Jaguemont, J., Boulon, L. & Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 164, 99–114 (2016).

    Article  Google Scholar 

  11. Maximizing Battery Life and Lifespan (Apple, accessed 1 March 2018);

  12. Arguez, A. et al. NOAA’s 1981–2010 US climate normals: an overview. Bull. Am. Meteor. Soc. 93, 1687–1697 (2012).

    Article  Google Scholar 

  13. Ji, Y. & Wang, C. Y. Heating strategies for Li-ion batteries operated from subzero temperatures. Electrochim. Acta 107, 664–674 (2013).

    Article  Google Scholar 

  14. Wang, C. Y. et al. Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515 (2016).

    Article  Google Scholar 

  15. Zhang, G. et al. Rapid restoration of electric vehicle battery performance while driving at cold temperatures. J. Power Sources 371, 35–40 (2017).

    Article  Google Scholar 

  16. Buford, K., Williams, J. & Simonini, M. Determining Most Energy Efficient Cooling Control Strategy of a Rechargeable Energy Storage System Report 0148-7191 (SAE Technical Paper, 2011).

  17. Novak, K. S., Phillips, C. J., Sunada, E. T. & Kinsella, G. M. Mars Exploration Rover Surface Mission Flight Thermal Performance Report 0148-7191 (SAE Technical Paper, 2005).

  18. Ando, M., Shinozaki, K., Okamoto, A., Sugita, H. & Nohara, T. Development of mechanical heat switch for future space missions. Proc. 44th Int. Conf. Environ. Syst. (2014).

  19. Shu, Q., Demko, J. & Fesmire, J. Heat switch technology for cryogenic thermal management. IOP Conference Series Mater. Sci. Engin. 012133 (IOP Publishing, 2017).

  20. Wehmeyer, G., Yabuki, T., Monachon, C., Wu, J. & Dames, C. Thermal diodes, regulators, and switches: Physical mechanisms and potential applications. Appl. Phys. Rev. 4, 041304 (2017).

    Article  Google Scholar 

  21. Lyeo, H. K. et al. Thermal conductivity of phase-change material Ge2Sb2Te5. Appl. Phys. Lett. 89, 151904 (2006).

    Article  Google Scholar 

  22. Reifenberg, J. P. et al. Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films. Appl. Phys. Lett. 91, 111904 (2007).

    Article  Google Scholar 

  23. Zhu, J. et al. Temperature-gated thermal rectifier for active heat flow control. Nano Lett. 14, 4867–4872 (2014).

    Article  Google Scholar 

  24. Ito, K., Nishikawa, K., Iizuka, H. & Toshiyoshi, H. Experimental investigation of radiative thermal rectifier using vanadium dioxide. Appl. Phys. Lett. 105, 253503 (2014).

    Article  Google Scholar 

  25. Ben-Abdallah, P. & Biehs, S. A. Phase-change radiative thermal diode. Appl. Phys. Lett. 103, 191907 (2013).

    Article  Google Scholar 

  26. Yang, J. et al. Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces. Nat. Nanotech. 7, 91–95 (2012).

    Article  Google Scholar 

  27. Cho, J. et al. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5, 4035 (2014).

    Article  Google Scholar 

  28. Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015).

    Article  Google Scholar 

  29. Guo, L., Zhang, X., Huang, Y., Hu, R. & Liu, C. Thermal characterization of a new differential thermal expansion heat switch for space optical remote sensor. Appl. Therm. Eng. 113, 1242–1249 (2017).

    Article  Google Scholar 

  30. Marland, B., Bugby, D. & Stouffer, C. Development and testing of an advanced cryogenic thermal switch and cryogenic thermal switch test bed. Cryogenics 44, 413–420 (2004).

    Article  Google Scholar 

  31. Jani, J. M., Leary, M., Subic, A. & Gibson, M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014).

    Article  Google Scholar 

  32. Jain, A. & Goodson, K. E. Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method. J. Heat Transfer 130, 102402 (2008).

    Article  Google Scholar 

  33. Yovanovich, M. M. Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans. Components Packaging Technol 28, 182–206 (2005).

    Article  Google Scholar 

  34. Tso, C. Y. & Chao, C. Y. Solid-state thermal diode with shape memory alloys. Int. J. Heat Mass Transfer 93, 605–611 (2016).

    Article  Google Scholar 

  35. Saums, D. ASTM D 5470-06 Thermal Interface Material Test Stand (DS&A LLC, 2006).

  36. Hao, M., Saviers, K. R. & Fisher, T. S. Design and validation of a high-temperature thermal interface resistance measurement system. J. Therm. Sci. Eng. Appl. 8, 031008 (2016).

    Article  Google Scholar 

  37. Aceves, S. M., Berry, G. D., Martinez-Frias, J. & Espinosa-Loza, F. Vehicular storage of hydrogen in insulated pressure vessels. Int. J. Hydrogen Energy 31, 2274–2283 (2006).

    Article  Google Scholar 

  38. Kuze, Y., Kobayashi, H., Ichinose, H. & Otsuka, T. Development of New Generation Hybrid System (THS II)-Development of Toyota Coolant Heat Storage System Report 0148-7191 (SAE Technical Paper, 2004).

  39. Strnadel, B., Ohashi, S., Ohtsuka, H., Ishihara, T. & Miyazaki, S. Cyclic stress-strain characteristics of TiNi and TiNiCu shape memory alloys. Mater. Sci. Eng. A 202, 148–156 (1995).

    Article  Google Scholar 

  40. Santhanagopalan, S., Zhang, Q., Kumaresan, K. & White, R. E. Parameter estimation and life modeling of lithium-ion cells. J. Electrochem. Soc. 155, A345–A353 (2008).

    Article  Google Scholar 

  41. Ramadass, P., Haran, B., Gomadam, P. M., White, R. & Popov, B. N. Development of first principles capacity fade model for Li-ion cells. J. Electrochem. Soc. 151, A196–A203 (2004).

    Article  Google Scholar 

  42. Panasonic 18650PF Specifications (Panasonic, accessed 20 July 2018);

  43. Millner, A. Modeling lithium ion battery degradation in electric vehicles. In Proc. 2010 IEEE Conference Innovative Technol. Efficient Reliable Electricity Supply (CITRES) 349–356 (IEEE, 2010).

Download references


The authors gratefully acknowledge funding support from Toyota Research Institute North America and technical discussions with D. Banerjee and G. Zhu. The authors also thank X. Ren and X. Zhang for assistance with FTIR measurements.

Author information

Authors and Affiliations



M.H. and C.D. conceived and designed the experiments. M.H. and J.L. conducted the proof-of-concept test in vacuum. M.H., S.P. and S.M. performed the experiments with the battery module. M.H. and C.D. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Chris Dames.

Ethics declarations

Competing interests

M.H. and C.D. are co-inventors on a provisional patent application (US 62/719,220) that has been filed by the Regents of the University of California based on this work.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Supplementary Figures 1–10, Supplementary Table 1, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, M., Li, J., Park, S. et al. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat Energy 3, 899–906 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing