Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries

Abstract

Practical lithium metal batteries require full and reversible utilization of thin metallic Li anodes. This introduces a fundamental challenge concerning how to create solid-electrolyte interphases (SEIs) that are able to regulate interfacial transport and protect the reactive metal, without adding appreciably to the cell mass. Here, we report on physicochemical characteristics of Langmuir–Blodgett artificial SEIs (LBASEIs) created using phosphate-functionalized reduced graphene oxides. We find that LBASEIs not only meet the challenges of stabilizing the Li anode, but can be facilely assembled in a simple, scalable process. The LBASEI derives its effectiveness primarily from its ability to form a durable coating on Li that regulates electromigration at the anode/electrolyte interface. In a first step towards practical cells in which the anode and cathode capacities are matched, we report that it is possible to achieve stable operations in both coin and pouch cells composed of a thin Li anode with the LBASEI and a high-loading intercalation cathode.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: LBASEI designs and fabrication processes for the LBASEI Li electrode.
Fig. 2: Interactive sites of the lithium on the LBASEI.
Fig. 3: Lithium nucleation overpotential analysis for the LBASEIs.
Fig. 4: Electrochemical properties of the LBASEI.
Fig. 5: Li migration properties of the LBASEI.
Fig. 6: Electrochemical performance of the LBASEI Li.
Fig. 7: Electrochemical performance of the full cell with defined n/p ratios.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    Article  Google Scholar 

  2. 2.

    Cheng, X. B., Zhang, R., Zhao, C. Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    Article  Google Scholar 

  3. 3.

    Larcher, D. & Tarascon, J.-M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  Google Scholar 

  4. 4.

    Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  5. 5.

    Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  Google Scholar 

  6. 6.

    Wei, S., Choudhury, S., Tu, Z., Zhang, K. & Archer, L. A. Electrochemical interphases for high-energy storage using reactive metal anodes. Acc. Chem. Res. 51, 80–88 (2018).

    Article  Google Scholar 

  7. 7.

    Liang, X. et al. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 6, 17119 (2017).

    Article  Google Scholar 

  8. 8.

    Tu, Z. et al. Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat. Energy 3, 310–316 (2018).

    Article  Google Scholar 

  9. 9.

    Choudhury, S. et al. Designer interphases for the lithium-oxygen electrochemical cell. Sci. Adv. 3, 1602809 (2017).

    Article  Google Scholar 

  10. 10.

    Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotech. 12, 194–206 (2017).

    Article  Google Scholar 

  11. 11.

    Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 1–7 (2016).

    Article  Google Scholar 

  12. 12.

    Tikekar, M. D., Archer, L. A. & Koch, D. L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, 1600320 (2016).

    Article  Google Scholar 

  13. 13.

    Tu, Z. et al. Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries. Joule 1, 394–406 (2017).

    Article  Google Scholar 

  14. 14.

    Guo, Y., Li, H. & Zhai, T. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 29, 1–25 (2017).

    Google Scholar 

  15. 15.

    Kim, M. S. et al. Designing solid-electrolyte interphases for lithium sulfur electrodes using ionic shields. Nano Energy 41, 573–582 (2017).

    Article  Google Scholar 

  16. 16.

    Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626–632 (2016).

    Article  Google Scholar 

  17. 17.

    Liu, S. et al. Crumpled graphene balls stabilized dendrite-free lithium metal anodes. Joule 2, 184–193 (2018).

    Article  Google Scholar 

  18. 18.

    Liu, L. et al. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes. Joule 1, 563–575 (2017).

    Article  Google Scholar 

  19. 19.

    Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article  Google Scholar 

  20. 20.

    Liu, L. et al. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 30, 1706216 (2018).

    Article  Google Scholar 

  21. 21.

    Deng, W., Zhou, X., Fang, Q. & Liu, Z. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes. Adv. Energy Mater. 8, 1703152 (2018).

    Article  Google Scholar 

  22. 22.

    Zhang, R. et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56, 7764–7768 (2017).

    Article  Google Scholar 

  23. 23.

    Raji, A. O. et al. Lithium batteries with nearly maximum metal storage. ACS Nano 11, 6362–6369 (2017).

    Article  Google Scholar 

  24. 24.

    Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nano 11, 626–632 (2016).

    Article  Google Scholar 

  25. 25.

    Liang, Z. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl Acad. Sci. USA 113, 2862–2867 (2016).

    Article  Google Scholar 

  26. 26.

    Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).

    Article  Google Scholar 

  27. 27.

    Zhi, J., Zehtab Yazdi, A., Valappil, G., Haime, J. & Chen, P. Artificial solid electrolyte interphase for aqueous lithium energy storage systems. Sci. Adv. 3, 1701010 (2017).

    Article  Google Scholar 

  28. 28.

    Kim, M. S., Choudhury, S., Moganty, S. S., Wei, S. & Archer, L. A. Fabricating multifunctional nanoparticle membranes by a fast layer-by-layer Langmuir–Blodgett process: application in lithium–sulfur batteries. J. Mater. Chem. A 4, 14709–14719 (2016).

    Article  Google Scholar 

  29. 29.

    Kim, M. S., Ma, L., Choudhury, S. & Archer, L. A. Multifunctional separator coatings for high-performance lithium–sulfur batteries. Adv. Mater. Interfaces 3, 1600450 (2016).

    Article  Google Scholar 

  30. 30.

    Kresse, G. & Furthmu, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  31. 31.

    Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. G. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2017).

    Article  Google Scholar 

  32. 32.

    Zheng, J. et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017).

    Article  Google Scholar 

  33. 33.

    Qian, J. et al. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016).

    Article  Google Scholar 

  34. 34.

    Jiao, S. et al. Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries. Joule 2, 110–124 (2018).

    Article  Google Scholar 

  35. 35.

    Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

    Article  Google Scholar 

  36. 36.

    Fan, X. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotech. 13, 715–722 (2018).

    Article  Google Scholar 

  37. 37.

    Li, X. et al. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives. Adv. Energy Mater. 8, 1703022 (2018).

    Article  Google Scholar 

  38. 38.

    Kovtyukhova, N. I. et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999).

    Article  Google Scholar 

  39. 39.

    Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).

    Article  Google Scholar 

  40. 40.

    Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter. 6, 8245–8257 (1994).

    Article  Google Scholar 

  41. 41.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  42. 42.

    Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 244–249 (1992).

    Article  Google Scholar 

  43. 43.

    Deepika, Kumar, S., Shukla, A. & Kumar, R. Origin of multiple band gap values in single width nanoribbons. Sci. Rep. 6, 36168 (2016).

  44. 44.

    Deepika, Kumar, T. J. D., Shukla, A. & Kumar, R. Edge configurational effect on band gaps in graphene nanoribbons. Phys. Rev. B 91, 1–5 (2015).

    Article  Google Scholar 

  45. 45.

    Pack, J. D. & Monkhorst, H. J. Special points for Brillouin-zone integrations. Phys. Rev. B 16, 1748–1749 (1977).

    Article  Google Scholar 

  46. 46.

    Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter. 22, 246401 (2010).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF-2016M1B3A1A01937324) and the Korea Institute of Science and Technology (KIST) Institutional Program (Project No. 2E28141). L.A.A. also acknowledges support from the US Advanced Research Projects Agency — Energy (ARPA-E) through award #DE-AR0000750. D. thanks Virtual lab www.vfab.org for the Cloud Computing Interface and the KIST supercomputing facility.

Author information

Affiliations

Authors

Contributions

M.S.K., L.A.A. and W.I.C. designed and conceptualized the study. J.-H.R. prepared Langmuir–Blodgett artificial SEIs on specified substrates and provided technical support. D. performed density functional theory calculations for the Li atom binding energies and the charge density analysis on the specified species and atomic structures. Y.R.L. and I.W.N. prepared graphene oxides and helped with XPS experiments. K.-R.L supervised the computational study. W.I.C and L.A.A supervised the overall study. M.S.K performed all the experiments, characterization and analysis and wrote the manuscript. All the authors discussed the manuscript and provided comments.

Corresponding authors

Correspondence to Lynden A. Archer or Won Il Cho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

41560_2018_237_MOESM2_ESM.mp4

Demonstration of Langmuir Blodgett Scooping as a scalable, continuous process for fabricating artificial solid electrolyte interphases (ASEI) on a metallic substrate.

41560_2018_237_MOESM3_ESM.mp4

Illustration of the roll-coating method used to transfer LBASEI from a copper substrate onto a metallic Lithium electrode.

Supplementary Information

Supplementary Notes 1–6, Supplementary Figures 1–11, Supplementary References, Supplementary Videos 1–2

Video 1

Demonstration of Langmuir Blodgett Scooping as a scalable, continuous process for fabricating artificial solid electrolyte interphases (ASEI) on a metallic substrate.

Video 2

Illustration of the roll-coating method used to transfer LBASEI from a copper substrate onto a metallic Lithium electrode.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, M.S., Ryu, J., Deepika et al. Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat Energy 3, 889–898 (2018). https://doi.org/10.1038/s41560-018-0237-6

Download citation

Further reading