Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods


Full water splitting into hydrogen and oxygen on semiconductor nanocrystals is a challenging task; overpotentials must be overcome for both half-reactions and different catalytic sites are needed to facilitate them. Additionally, efficient charge separation and prevention of back reactions are necessary. Here, we report simultaneous H2 and O2 evolution by CdS nanorods decorated with nanoparticulate reduction and molecular oxidation co-catalysts. The process proceeds entirely without sacrificial agents and relies on the nanorod morphology of CdS to spatially separate the reduction and oxidation sites. Hydrogen is generated on Pt nanoparticles grown at the nanorod tips, while Ru(tpy)(bpy)Cl2-based oxidation catalysts are anchored through dithiocarbamate bonds onto the sides of the nanorod. O2 generation from water was verified by 18O isotope labelling experiments, and time-resolved spectroscopic results confirmed efficient charge separation and ultrafast electron and hole transfer to the reaction sites. The system demonstrates that combining nanoparticulate and molecular catalysts on anisotropic nanocrystals provides an effective pathway for visible-light-driven photocatalytic water splitting.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic representation of water splitting on decorated CdS nanorods.
Fig. 2: Preparation and characterization of the photocatalyst.
Fig. 3: Effect of decoration of CdS with RuDTC on photoluminescence, quenching and decay dynamics.
Fig. 4: Transient absorption measurements.
Fig. 5: Photocatalytic hydrogen and oxygen generation.


  1. 1.

    Lewis, N. S. Toward cost-effective solar energy use. Science 315, 798–801 (2007).

    Article  Google Scholar 

  2. 2.

    Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    Article  Google Scholar 

  3. 3.

    Frischmann, P. D., Mahata, K. & Würthner, F. Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem. Soc. Rev. 42, 1847–1870 (2013).

    Article  Google Scholar 

  4. 4.

    Tinker, L. L., McDaniel, N. D. & Bernhard, S. Progress towards solar-powered homogeneous water photolysis. J. Mater. Chem. 19, 3328–3337 (2009).

    Article  Google Scholar 

  5. 5.

    Tran, P. D., Artero, V. & Fontecave, M. Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems. Energy Environ. Sci. 3, 727–747 (2010).

    Article  Google Scholar 

  6. 6.

    Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013).

    Article  Google Scholar 

  7. 7.

    Simon, T. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 13, 1013–1018 (2014).

    Article  Google Scholar 

  8. 8.

    Duan, L., Tong, L., Xu, Y. & Sun, L. Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells. Energy Environ. Sci. 4, 3296–3313 (2011).

    Article  Google Scholar 

  9. 9.

    Gust, D., Moore, T. A. & Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009).

    Article  Google Scholar 

  10. 10.

    Hetterscheid, D. G. H. & Reek, J. N. H. Mononuclear water oxidation catalysts. Angew. Chem. Int. Ed. 51, 9740–9747 (2012).

    Article  Google Scholar 

  11. 11.

    Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011).

    Article  Google Scholar 

  12. 12.

    Gao, Y. et al. Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density. J. Am. Chem. Soc. 135, 4219–4222 (2013).

    Article  Google Scholar 

  13. 13.

    Symes, M. D. & Cronin, L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 5, 403–409 (2013).

    Article  Google Scholar 

  14. 14.

    Wang, X. et al. Photocatalytic overall water splitting promoted by an α–β phase junction on Ga2O3. Angew. Chem. Int. Ed. 51, 13089–13092 (2012).

    Article  Google Scholar 

  15. 15.

    Maeda, K. & Domen, K. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010).

    Article  Google Scholar 

  16. 16.

    Han, Z., Qiu, F., Eisenberg, R., Holland, P. L. & Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338, 1321–1324 (2012).

    Article  Google Scholar 

  17. 17.

    Ben-Shahar, Y. et al. Optimal metal domain size for photocatalysis with hybrid semiconductor–metal nanorods. Nat. Commun. 7, 10413 (2016).

    Article  Google Scholar 

  18. 18.

    Wu, K. & Lian, T. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chem. Soc. Rev. 45, 3781–3810 (2016).

    Article  Google Scholar 

  19. 19.

    Stolarczyk, J. K., Bhattacharyya, S., Polavarapu, L. & Feldmann, J. Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures. ACS Catal. 8, 3602–3635 (2018).

    Article  Google Scholar 

  20. 20.

    Simon, T., Carlson, M. T., Stolarczyk, J. K. & Feldmann, J. Electron transfer rate vs recombination losses in photocatalytic H2 generation on Pt-decorated CdS nanorods. ACS Energy Lett. 1, 1137–1142 (2016).

    Article  Google Scholar 

  21. 21.

    Kalisman, P., Nakibli, Y. & Amirav, L. Perfect photon-to-hydrogen conversion efficiency. Nano Lett. 16, 1776–1781 (2016).

    Article  Google Scholar 

  22. 22.

    Wu, K. et al. Hole removal rate limits photodriven H2 generation efficiency in CdS-Pt and CdSe/CdS-Pt semiconductor nanorod–metal tip heterostructures. J. Am. Chem. Soc. 136, 7708–7716 (2014).

    Article  Google Scholar 

  23. 23.

    Chen, S. & Wang, L.-W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 24, 3659–3666 (2012).

    Article  Google Scholar 

  24. 24.

    Berr, M. J. et al. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Appl. Phys. Lett. 100, 223903 (2012).

    Article  Google Scholar 

  25. 25.

    Ding, T. X., Olshansky, J. H., Leone, S. R. & Alivisatos, A. P. Efficiency of hole transfer from photoexcited quantum dots to covalently linked molecular species. J. Am. Chem. Soc. 137, 2021–2029 (2015).

    Article  Google Scholar 

  26. 26.

    Kalyanasundaram, K., Borgarello, E., Duonghong, D. & Grätzel, M. Cleavage of water by visible-light irradiation of colloidal CdS solutions; inhibition of photocorrosion by RuO2. Angew. Chem. Int. Ed. 20, 987–988 (1981).

    Article  Google Scholar 

  27. 27.

    Kalisman, P., Kauffmann, Y. & Amirav, L. Photochemical oxidation on nanorod photocatalysts. J. Mater. Chem. A 3, 3261–3265 (2015).

    Article  Google Scholar 

  28. 28.

    Concepcion, J. J. et al. Making oxygen with ruthenium complexes. Acc. Chem. Res. 42, 1954–1965 (2009).

    Article  Google Scholar 

  29. 29.

    Tseng, H.-W., Wilker, M. B., Damrauer, N. H. & Dukovic, G. Charge transfer dynamics between photoexcited CdS nanorods and mononuclear Ru water-oxidation catalysts. J. Am. Chem. Soc. 135, 3383–3386 (2013).

    Article  Google Scholar 

  30. 30.

    Thackeray, J. W., Natan, M. J., Ng, P. & Wrighton, M. S. Interaction of diethyldithiocarbamate with n-type cadmium sulfide and cadmium selenide: efficient photoelectrochemical oxidation to the disulfide and flat-band potential of the semiconductor as a function of adsorbate concentration. J. Am. Chem. Soc. 108, 3570–3577 (1986).

    Article  Google Scholar 

  31. 31.

    La Croix, A. D. et al. Design of a hole trapping ligand. Nano Lett. 17, 909–914 (2017).

    Article  Google Scholar 

  32. 32.

    Saunders, A. E., Ghezelbash, A., Sood, P. & Korgel, B. A. Synthesis of high aspect ratio quantum-size CdS nanorods and their surface-dependent photoluminescence. Langmuir 24, 9043–9049 (2008).

    Article  Google Scholar 

  33. 33.

    Mokari, T., Rothenberg, E., Popov, I., Costi, R. & Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787–1790 (2004).

    Article  Google Scholar 

  34. 34.

    Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000).

    Article  Google Scholar 

  35. 35.

    Wu, K., Zhu, H., Liu, Z., Rodríguez-Córdoba, W. & Lian, T. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod Hhterostructures. J. Am. Chem. Soc. 134, 10337–10340 (2012).

    Article  Google Scholar 

  36. 36.

    Utterback, J. K. et al. Observation of trapped-hole diffusion on the surfaces of CdS nanorods. Nat. Chem. 8, 1061–1066 (2016).

    Article  Google Scholar 

  37. 37.

    Lian, S., Weinberg, D. J., Harris, R. D., Kodaimati, M. S. & Weiss, E. A. Subpicosecond photoinduced hole transfer from a CdS quantum dot to a molecular acceptor bound through an exciton-delocalizing ligand. ACS Nano 10, 6372–6382 (2016).

    Article  Google Scholar 

  38. 38.

    Lee, J. R., Li, W., Cowan, A. J. & Jäckel, F. Hydrophilic, hole-delocalizing ligand shell to promote charge transfer from colloidal CdSe quantum dots in water. J. Phys. Chem. C 121, 15160–15168 (2017).

    Article  Google Scholar 

  39. 39.

    Habas, S. E., Yang, P. & Mokari, T. Selective growth of metal and binary metal tips on CdS nanorods. J. Am. Chem. Soc. 130, 3294–3295 (2008).

    Article  Google Scholar 

  40. 40.

    Yu, W. W., Qu, L., Guo, W. & Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003).

    Article  Google Scholar 

Download references


This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant ‘Solar Technologies go Hybrid (SolTech)’ and the ERANETMED programme (project Hydrosol, grant no. ENERG-11-132). The authors thank C. Hohmann (Nanosystems Initiative Munich) for his support with graphics design. P.D.F. thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship.

Author information




All authors contributed to the design of the experiments, interpretation of the results and discussion of the outline of the manuscript. C.M.W., P.D.F., M.S., B.J.B., R.W., P.L. and M.T.C. carried out the experiments. J.K.S. wrote the manuscript, with input and comments from the other authors. J.F., F.W. and J.K.S. supervised the work.

Corresponding authors

Correspondence to Frank Würthner or Jacek K. Stolarczyk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Notes 1–2, Supplementary Tables 1–2, Supplementary Figures 1–20, Supplementary References 1–2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wolff, C.M., Frischmann, P.D., Schulze, M. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat Energy 3, 862–869 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing