Abstract

Full water splitting into hydrogen and oxygen on semiconductor nanocrystals is a challenging task; overpotentials must be overcome for both half-reactions and different catalytic sites are needed to facilitate them. Additionally, efficient charge separation and prevention of back reactions are necessary. Here, we report simultaneous H2 and O2 evolution by CdS nanorods decorated with nanoparticulate reduction and molecular oxidation co-catalysts. The process proceeds entirely without sacrificial agents and relies on the nanorod morphology of CdS to spatially separate the reduction and oxidation sites. Hydrogen is generated on Pt nanoparticles grown at the nanorod tips, while Ru(tpy)(bpy)Cl2-based oxidation catalysts are anchored through dithiocarbamate bonds onto the sides of the nanorod. O2 generation from water was verified by 18O isotope labelling experiments, and time-resolved spectroscopic results confirmed efficient charge separation and ultrafast electron and hole transfer to the reaction sites. The system demonstrates that combining nanoparticulate and molecular catalysts on anisotropic nanocrystals provides an effective pathway for visible-light-driven photocatalytic water splitting.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Lewis, N. S. Toward cost-effective solar energy use. Science 315, 798–801 (2007).

  2. 2.

    Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

  3. 3.

    Frischmann, P. D., Mahata, K. & Würthner, F. Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem. Soc. Rev. 42, 1847–1870 (2013).

  4. 4.

    Tinker, L. L., McDaniel, N. D. & Bernhard, S. Progress towards solar-powered homogeneous water photolysis. J. Mater. Chem. 19, 3328–3337 (2009).

  5. 5.

    Tran, P. D., Artero, V. & Fontecave, M. Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems. Energy Environ. Sci. 3, 727–747 (2010).

  6. 6.

    Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013).

  7. 7.

    Simon, T. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 13, 1013–1018 (2014).

  8. 8.

    Duan, L., Tong, L., Xu, Y. & Sun, L. Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells. Energy Environ. Sci. 4, 3296–3313 (2011).

  9. 9.

    Gust, D., Moore, T. A. & Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009).

  10. 10.

    Hetterscheid, D. G. H. & Reek, J. N. H. Mononuclear water oxidation catalysts. Angew. Chem. Int. Ed. 51, 9740–9747 (2012).

  11. 11.

    Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011).

  12. 12.

    Gao, Y. et al. Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density. J. Am. Chem. Soc. 135, 4219–4222 (2013).

  13. 13.

    Symes, M. D. & Cronin, L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 5, 403–409 (2013).

  14. 14.

    Wang, X. et al. Photocatalytic overall water splitting promoted by an α–β phase junction on Ga2O3. Angew. Chem. Int. Ed. 51, 13089–13092 (2012).

  15. 15.

    Maeda, K. & Domen, K. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010).

  16. 16.

    Han, Z., Qiu, F., Eisenberg, R., Holland, P. L. & Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338, 1321–1324 (2012).

  17. 17.

    Ben-Shahar, Y. et al. Optimal metal domain size for photocatalysis with hybrid semiconductor–metal nanorods. Nat. Commun. 7, 10413 (2016).

  18. 18.

    Wu, K. & Lian, T. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chem. Soc. Rev. 45, 3781–3810 (2016).

  19. 19.

    Stolarczyk, J. K., Bhattacharyya, S., Polavarapu, L. & Feldmann, J. Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures. ACS Catal. 8, 3602–3635 (2018).

  20. 20.

    Simon, T., Carlson, M. T., Stolarczyk, J. K. & Feldmann, J. Electron transfer rate vs recombination losses in photocatalytic H2 generation on Pt-decorated CdS nanorods. ACS Energy Lett. 1, 1137–1142 (2016).

  21. 21.

    Kalisman, P., Nakibli, Y. & Amirav, L. Perfect photon-to-hydrogen conversion efficiency. Nano Lett. 16, 1776–1781 (2016).

  22. 22.

    Wu, K. et al. Hole removal rate limits photodriven H2 generation efficiency in CdS-Pt and CdSe/CdS-Pt semiconductor nanorod–metal tip heterostructures. J. Am. Chem. Soc. 136, 7708–7716 (2014).

  23. 23.

    Chen, S. & Wang, L.-W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 24, 3659–3666 (2012).

  24. 24.

    Berr, M. J. et al. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Appl. Phys. Lett. 100, 223903 (2012).

  25. 25.

    Ding, T. X., Olshansky, J. H., Leone, S. R. & Alivisatos, A. P. Efficiency of hole transfer from photoexcited quantum dots to covalently linked molecular species. J. Am. Chem. Soc. 137, 2021–2029 (2015).

  26. 26.

    Kalyanasundaram, K., Borgarello, E., Duonghong, D. & Grätzel, M. Cleavage of water by visible-light irradiation of colloidal CdS solutions; inhibition of photocorrosion by RuO2. Angew. Chem. Int. Ed. 20, 987–988 (1981).

  27. 27.

    Kalisman, P., Kauffmann, Y. & Amirav, L. Photochemical oxidation on nanorod photocatalysts. J. Mater. Chem. A 3, 3261–3265 (2015).

  28. 28.

    Concepcion, J. J. et al. Making oxygen with ruthenium complexes. Acc. Chem. Res. 42, 1954–1965 (2009).

  29. 29.

    Tseng, H.-W., Wilker, M. B., Damrauer, N. H. & Dukovic, G. Charge transfer dynamics between photoexcited CdS nanorods and mononuclear Ru water-oxidation catalysts. J. Am. Chem. Soc. 135, 3383–3386 (2013).

  30. 30.

    Thackeray, J. W., Natan, M. J., Ng, P. & Wrighton, M. S. Interaction of diethyldithiocarbamate with n-type cadmium sulfide and cadmium selenide: efficient photoelectrochemical oxidation to the disulfide and flat-band potential of the semiconductor as a function of adsorbate concentration. J. Am. Chem. Soc. 108, 3570–3577 (1986).

  31. 31.

    La Croix, A. D. et al. Design of a hole trapping ligand. Nano Lett. 17, 909–914 (2017).

  32. 32.

    Saunders, A. E., Ghezelbash, A., Sood, P. & Korgel, B. A. Synthesis of high aspect ratio quantum-size CdS nanorods and their surface-dependent photoluminescence. Langmuir 24, 9043–9049 (2008).

  33. 33.

    Mokari, T., Rothenberg, E., Popov, I., Costi, R. & Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787–1790 (2004).

  34. 34.

    Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000).

  35. 35.

    Wu, K., Zhu, H., Liu, Z., Rodríguez-Córdoba, W. & Lian, T. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod Hhterostructures. J. Am. Chem. Soc. 134, 10337–10340 (2012).

  36. 36.

    Utterback, J. K. et al. Observation of trapped-hole diffusion on the surfaces of CdS nanorods. Nat. Chem. 8, 1061–1066 (2016).

  37. 37.

    Lian, S., Weinberg, D. J., Harris, R. D., Kodaimati, M. S. & Weiss, E. A. Subpicosecond photoinduced hole transfer from a CdS quantum dot to a molecular acceptor bound through an exciton-delocalizing ligand. ACS Nano 10, 6372–6382 (2016).

  38. 38.

    Lee, J. R., Li, W., Cowan, A. J. & Jäckel, F. Hydrophilic, hole-delocalizing ligand shell to promote charge transfer from colloidal CdSe quantum dots in water. J. Phys. Chem. C 121, 15160–15168 (2017).

  39. 39.

    Habas, S. E., Yang, P. & Mokari, T. Selective growth of metal and binary metal tips on CdS nanorods. J. Am. Chem. Soc. 130, 3294–3295 (2008).

  40. 40.

    Yu, W. W., Qu, L., Guo, W. & Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003).

Download references

Acknowledgements

This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant ‘Solar Technologies go Hybrid (SolTech)’ and the ERANETMED programme (project Hydrosol, grant no. ENERG-11-132). The authors thank C. Hohmann (Nanosystems Initiative Munich) for his support with graphics design. P.D.F. thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship.

Author information

Author notes

    • Christian M. Wolff

    Present address: University of Potsdam, Institute of Physics and Astronomy, Golm, Potsdam, Germany

    • Peter D. Frischmann

    Present address: Sepion Technologies, Oakland, CA, USA

    • Frank Jäckel

    Present address: Stephenson Institute for Renewable Energy and Department of Physics, University of Liverpool, Liverpool, UK

Affiliations

  1. Photonics and Optoelectronics Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany

    • Christian M. Wolff
    • , Bernhard J. Bohn
    • , Robin Wein
    • , Panajotis Livadas
    • , Michael T. Carlson
    • , Frank Jäckel
    • , Jochen Feldmann
    •  & Jacek K. Stolarczyk
  2. Nanosystems Initiative Munich (NIM), Munich, Germany

    • Christian M. Wolff
    • , Bernhard J. Bohn
    • , Robin Wein
    • , Panajotis Livadas
    • , Michael T. Carlson
    • , Frank Jäckel
    • , Jochen Feldmann
    •  & Jacek K. Stolarczyk
  3. Institute für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Würzburg, Germany

    • Peter D. Frischmann
    • , Marcus Schulze
    •  & Frank Würthner

Authors

  1. Search for Christian M. Wolff in:

  2. Search for Peter D. Frischmann in:

  3. Search for Marcus Schulze in:

  4. Search for Bernhard J. Bohn in:

  5. Search for Robin Wein in:

  6. Search for Panajotis Livadas in:

  7. Search for Michael T. Carlson in:

  8. Search for Frank Jäckel in:

  9. Search for Jochen Feldmann in:

  10. Search for Frank Würthner in:

  11. Search for Jacek K. Stolarczyk in:

Contributions

All authors contributed to the design of the experiments, interpretation of the results and discussion of the outline of the manuscript. C.M.W., P.D.F., M.S., B.J.B., R.W., P.L. and M.T.C. carried out the experiments. J.K.S. wrote the manuscript, with input and comments from the other authors. J.F., F.W. and J.K.S. supervised the work.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Frank Würthner or Jacek K. Stolarczyk.

Supplementary information

  1. Supplementary Information

    Supplementary Methods, Supplementary Notes 1–2, Supplementary Tables 1–2, Supplementary Figures 1–20, Supplementary References 1–2

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41560-018-0229-6