Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries

Abstract

The lithium–sulfur battery is promising as an alternative to conventional lithium-ion technology due to the high energy density of both sulfur and lithium metal electrodes. An extended lifetime has been demonstrated, but two notable challenges still exist to realize its full potential: to overcome the undesired high electrolyte/sulfur ratio required for the catholyte-type mechanism that governs most cell configurations, and to inhibit Li dendrite growth and its parasitic reaction with the electrolyte that results in cell degradation. Here, we demonstrate that by tuning the electrolyte structure, the challenges at both electrodes can be tackled simultaneously. Specifically, the sulfur speciation pathway transforms from a dissolution–precipitation route to a quasi-solid state conversion in the presence of a lowered solvent activity and an extended electrolyte network, curtailing the need for high electrolyte volumes. Ab initio calculations reveal the nature of the network structure. With such an optimized structure, the electrolyte allows dendrite-free Li plating and shows a 20-fold reduction in parasitic reactions with Li, which avoids electrolyte consumption and greatly extends the life time of a low electrolyte/sulfur (5 µl mg–1) sulfur cell.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Spectroscopic and computational studies on the electrolyte structure of the G2:LiTFSI system.
Fig. 2: The electrochemistry profiles of sulfur cells in the G2:LiTFSI electrolytes.
Fig. 3: Operando XRD studies and characterization of the discharged products over cycling.
Fig. 4: The Li plating and stripping behaviour in different G2:LiTFSI electrolytes.
Fig. 5: XPS characterization of the Li anode SEI at a fully stripped status after ten cycles in Cu|Li cells.
Fig. 6: The electrochemical performances of Li–S cells using a low E/S ratio.

References

  1. Yin, Y. X., Xin, S., Guo, Y. G. & Wan, L. J. Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013).

    Article  Google Scholar 

  2. Yang, Y., Zheng, G. & Cui, Y. Nanostructured sulphur cathodes. Chem. Soc. Rev. 42, 3018–3032 (2013).

    Article  Google Scholar 

  3. Fang, R. et al. More reliable lithium–sulfur batteries: status, solutions and prospects. Adv. Mater. 29, 1606823 (2017).

    Article  Google Scholar 

  4. Manthiram, A., Chung, S. H. & Zu, C. Lithium–sulfur batteries: progress and prospects. Adv. Mater. 27, 1980–2006 (2015).

    Article  Google Scholar 

  5. Peng, H.-J., Huang, J.-Q., Cheng, X.-B. & Zhang, Q. Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017).

    Article  Google Scholar 

  6. Ma, L., Hendrickson, K. E., Wei, S. & Archer, L. A. Nanomaterials: science and applications in the lithium–sulfur battery. Nano Today 10, 315–338 (2015).

    Article  Google Scholar 

  7. Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    Article  Google Scholar 

  8. Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    Article  Google Scholar 

  9. Xin, S. et al. Small sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 134, 18510–18513 (2012).

    Article  Google Scholar 

  10. Strubel, P. et al. ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in a lithium–sulfur battery. Adv. Funct. Mater. 25, 287–297 (2015).

    Article  Google Scholar 

  11. Ye, X., Ma, J., Hu, Y.-S., Wei, H. & Ye, F. MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium–sulfur batteries. J. Mater. Chem. A 4, 775–780 (2016).

    Article  Google Scholar 

  12. Zhou, G. et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li–S batteries. Nano Energy 11, 356–365 (2015).

    Article  Google Scholar 

  13. Song, J. et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries. Adv. Funct. Mater. 24, 1243–1250 (2014).

    Article  Google Scholar 

  14. Wei, S., Ma, L., Hendrickson, K. E., Tu, Z. & Archer, L. A. Metal–sulfur battery cathodes based on PAN–sulfur composites. J. Am. Chem. Soc. 137, 12143–12152 (2015).

    Article  Google Scholar 

  15. Pang, Q., Kundu, D., Cuisinier, M. & Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nat. Commun. 5, 4759 (2014).

    Article  Google Scholar 

  16. Zhang, Q. et al. Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett. 15, 3780–3786 (2015).

    Article  Google Scholar 

  17. Peng, H.-J. et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew. Chem. Int. Ed. 55, 12990–12995 (2016).

    Article  Google Scholar 

  18. Rosenman, A. et al. Review on Li–sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1500212 (2015).

    Article  Google Scholar 

  19. Urbonaite, S., Poux, T. & Novak, P. Progress towards commercially viable Li–S battery cells. Adv. Energy Mater. 5, 1500118 (2015).

    Article  Google Scholar 

  20. Eroglu, D., Zavadil, K. R. & Gallagher, K. G. Critical link between materials chemistry and cell-level design for high energy density and low cost lithium–sulfur transportation battery. J. Electrochem. Soc. 162, A982–A990 (2015).

    Article  Google Scholar 

  21. Bonnick, P., Nagai, E. & Muldoon, J. Perspective—lithium–sulfur batteries. J. Electrochem. Soc. 165, A6005–A6007 (2018).

    Article  Google Scholar 

  22. Cuisinier, M., Hart, C., Balasubramanian, M., Garsuch, A. & Nazar, L. F. Radical or not radical: revisiting lithium–sulfur electrochemistry in nonaqueous electrolytes. Adv. Energy Mater. 5, 1401801 (2015).

    Article  Google Scholar 

  23. Pan, H. et al. On the way toward understanding solution chemistry of lithium polysulfides for high energy Li–S redox flow batteries. Adv. Energy Mater. 5, 1500113 (2015).

    Article  Google Scholar 

  24. Han, F. et al. High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16, 4521–4527 (2016).

    Article  Google Scholar 

  25. Fu, K. K. et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017).

    Article  Google Scholar 

  26. Wenzel, S. et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016).

    Article  Google Scholar 

  27. Yu, C. et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte–electrode interface. Nat. Commun. 8, 1086 (2017).

    Article  Google Scholar 

  28. Cuisinier, M. et al. Unique behaviour of nonsolvents for polysulfides in lithium–sulfur batteries. Energy Environ. Sci. 7, 2697–2705 (2014).

    Article  Google Scholar 

  29. Cheng, L. et al. Sparingly solvating electrolytes for high energy density lithium–sulfur batteries. ACS Energy Lett. 1, 503–509 (2016).

    Article  Google Scholar 

  30. Lee, C.-W. et al. Directing the lithium–sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries. ACS Cent. Sci. 3, 6056–613 (2017).

    Google Scholar 

  31. Yang, C. et al. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl Acad. Sci. USA 24, 6197–6202 (2017).

    Article  Google Scholar 

  32. Aurbach, D. & Gofer, Y. The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136, 3198–3205 (1989).

    Article  Google Scholar 

  33. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002).

    Article  Google Scholar 

  34. Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Article  Google Scholar 

  35. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  Google Scholar 

  36. Yoshida, K. et al. Oxidative-stability enhancement and charge transport mechanism in glyme−lithium salt equimolar complexes. J. Am. Chem. Soc. 133, 13121–13129 (2011).

    Article  Google Scholar 

  37. Dokko, K. et al. Solvate ionic liquid electrolyte for Li–S batteries. J. Electrochem. Soc. 160, A1304–A1310 (2013).

    Article  Google Scholar 

  38. Yamada, Y. et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136, 5039–5046 (2014).

    Article  Google Scholar 

  39. Wang, J. et al. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2018).

    Article  Google Scholar 

  40. See, K. A. et al. Effect of hydrofluoroether cosolvent addition on Li solvation in acetonitrile-based solvate electrolytes and its influence on S reduction in a Li–S battery. ACS Appl. Mater. Interfaces 8, 34360–34371 (2016).

    Article  Google Scholar 

  41. Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).

    Article  Google Scholar 

  42. Wujcik, K. H. et al. Characterization of polysulfide radicals present in an ether-based electrolyte of a lithium–sulfur battery during initial discharge using in situ X-ray absorption spectroscopy experiments and first-principles calculations. Adv. Energy Mater. 5, 1500285 (2014).

    Article  Google Scholar 

  43. Wujcik, K. H., Wang, D. R., Pascal, T. A., Prendergast, D. & Balsara, N. P. In situ X-ray absorption spectroscopy studies of discharge reactions in a thick cathode of a lithium sulfur battery. J. Electrochem. Soc. 164, A18–A27 (2017).

    Article  Google Scholar 

  44. Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016).

    Article  Google Scholar 

  45. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article  Google Scholar 

  46. Adams, B. D. et al. Long term stability of Li–S batteries using high concentration lithium nitrate electrolytes. Nano Energy 40, 607–617 (2017).

    Article  Google Scholar 

  47. Aurbach, D., Weissman, I. & Schechter, A. X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy. Langmuir 12, 3991–4007 (1996).

    Article  Google Scholar 

  48. Naoi, K., Mori, M., Naruoka, Y., Lamanna, W. & Atanasoski, R. The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis(perfluoroethylsulfonylimide) [LiN(C2F5SO2)2]. J. Electrochem. Soc. 146, 462–469 (1999).

    Article  Google Scholar 

  49. Strange, J. H., Rageb, S. M., Chadwick, A. V., Flak, K. W. & Harding, J. H. Conductivity and NMR study of ionic mobility in lithium oxide. J. Chem. Soc. Faraday Trans. 86, 1239–1241 (1990).

    Article  Google Scholar 

  50. Zugmann, S. et al. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. J. Electrochem. Soc. 155, A292–296 (2008).

    Article  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  52. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  54. Harl, J., Schimka, L. & Kresse, G. Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids. Phys. Rev. B 81, 115126 (2010).

    Article  Google Scholar 

  55. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the US Department of Energy, Office of Science, Basic Energy Sciences. L.F.N. also thanks the NSERC for generous support via their Canada Research Chair and Discovery Grant programmes. We appreciate helpful discussions with T. Watkins and K. Zavadil.

Author information

Authors and Affiliations

Authors

Contributions

Q.P. and L.F.N. conceived the concept. Q.P. designed the experimental work. B.N. and Q.P. designed the computational work. Q.P. prepared the electrolytes and performed the physical characterization of the electrolytes and electrodes, electrochemistry measurements and the operando XRD studies. A.S. conducted the NMR experiments, and assisted with the electrolyte preparation, Raman studies and electrochemistry measurements. B.N. and L.A.C. carried out the computational work. C.Y.K. conducted the ionic conductivity measurements. Q.P, L.F.N. and L.A.C. proposed the sulfur reaction pathways. All authors have thoroughly discussed the analysis of the data. Q.P., B.N., L.A.C. and L.F.N. wrote the manuscripts with contributions from all authors. L.F.N. supervised the work.

Corresponding author

Correspondence to Linda F. Nazar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6, Supplementary Figures 1–20, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pang, Q., Shyamsunder, A., Narayanan, B. et al. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat Energy 3, 783–791 (2018). https://doi.org/10.1038/s41560-018-0214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0214-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing