Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage

Abstract

Batteries are an attractive grid energy storage technology, but a reliable battery system with the functionalities required for a grid such as high power capability, high safety and low cost remains elusive. Here, we report a solid electrolyte-based molten lithium battery constructed with a molten lithium anode, a molten Sn–Pb or Bi–Pb alloy cathode and a garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) solid electrolyte tube. We show that the assembled Li||LLZTO||Sn–Pb and Li||LLZTO||Bi–Pb cells can stably cycle at an intermediate temperature of 240 °C for about one month at current densities of 50 mA cm−2 and 100 mA cm−2 respectively, with almost no capacity decay and an average Coulombic efficiency of 99.98%. Furthermore, the cells demonstrate high power capability with current densities up to 300 mA cm−2 (90 mW cm−2) for Li||LLZTO||Sn–Pb and 500 mA cm−2 (175 mW cm−2) for Li||LLZTO||Bi–Pb. Our design offers prospects for grid energy storage with intermediate temperature operations, high safety margin and low capital and maintenance costs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic and optical image of the Li||LLZTO||liquid cathode battery.
Fig. 2: Electrochemical performance of a Li||LLZTO||Sn–Pb cell operating at 240 °C.
Fig. 3: Electrochemical performance of a Li||LLZTO||Bi–Pb cell operating at 240 °C.
Fig. 4: Freezing and thawing test of the Li||LLZTO||Sn–Pb cell and the Li||LLZTO||Bi–Pb cell.
Fig. 5

References

  1. 1.

    Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  Google Scholar 

  2. 2.

    Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  Google Scholar 

  3. 3.

    Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  4. 4.

    Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy for the grid: a choice of battery. Science 334, 928–935 (2011).

    Article  Google Scholar 

  5. 5.

    Li, L. Y. et al. A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv. Energy Mater. 1, 394–400 (2011).

    Article  Google Scholar 

  6. 6.

    Wang, W. et al. Recent progress in redox fow battery research and development. Adv. Func. Mater. 23, 970–986 (2013).

    Article  Google Scholar 

  7. 7.

    Cairns, E. J. et al. Galvanic Cells with Fused-Salt Electrolytes Technical report ANL-7316 (Argonne National Laboratory, 1967).

  8. 8.

    Shimotake, H., Rogers, G. & Cairns, E. Secondary cells with lithium anodes and immobilized fused-salt electrolytes. Ind. Eng. Chem. Proc. Des. Dev. 8, 51–56 (1969).

    Article  Google Scholar 

  9. 9.

    Weaver, R. D., Smith, S. W. & Willmann, N. L. The sodium|tin liquid-metal cell. J. Electrochem. Soc. 109, 653–657 (1962).

    Article  Google Scholar 

  10. 10.

    Kim, H., Boysen, D. A., Ouchi, T. & Sadoway, D. R. Calciume-bismuth electrodes for large-scale energy storage (liquid metal batteries). J. Power Sources 241, 239–248 (2013).

    Article  Google Scholar 

  11. 11.

    Ouchi, T., Kim, H., Ning, X. H. & Sadoway, D. R. Calcium-antimony alloys as electrodes for liquid metal batteries. J. Electrochem. Soc. 161, A1898–A1904 (2014).

    Article  Google Scholar 

  12. 12.

    Bradwell, D. J., Kim, H., Sirk, A. H. & Sadoway, D. R. Magnesium-antimony liquid metal battery for stationary energy storage. J. Am. Chem. Soc. 134, 1895–1897 (2012).

    Article  Google Scholar 

  13. 13.

    Weppner, W. & Huggins, R. Thermodynamic properties of the intermetallic systems lithium-antimony and lithium-bismuth. J. Electrochem. Soc. 125, 71–4 (1978).

    Article  Google Scholar 

  14. 14.

    Saboungi, M. L., Marr, J. & Blander, M. Thermodynamic properties of a quasi-ionic alloy from electromotive force measurements: the Li-Pb system. J. Chem. Phys. 68, 1375–1384 (1978).

    Article  Google Scholar 

  15. 15.

    Wen, C. J. & Huggins, R. A. Thermodynamic study of the lithium-tin system. J. Electrochem. Soc. 128, 1181–1187 (1981).

    Article  Google Scholar 

  16. 16.

    Wang, K. L. et al. Lithium-antimony-lead liquid metal battery for grid-level energy storage. Nature 514, 348–350 (2014).

    Article  Google Scholar 

  17. 17.

    Ning, X. H. et al. Self-healing Li-Bi liquid metal battery for grid-scale energy storage. J. Power Sources 275, 370–376 (2015).

    Article  Google Scholar 

  18. 18.

    Li, H. et al. Liquid metal electrodes for energy storage batteries. Adv. Energy Mater. 6, 1600483 (2016).

    Article  Google Scholar 

  19. 19.

    Lu, X. et al. Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage. Nat. Commun. 5, 4578 (2014).

    Article  Google Scholar 

  20. 20.

    Thangadurai, V., Pinzaru, D., Narayanan, S. & Baral, A. K. Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage. J. Phys. Chem. Lett. 6, 292–299 (2015).

    Article  Google Scholar 

  21. 21.

    Liu, K. & Wang, C. A. Garnet-type Li6.4La3Zr1.4Ta0.6O12 thin sheet: fabrication and application. Electrochem. Commun. 48, 147–150 (2014).

    Article  Google Scholar 

  22. 22.

    Liu, K., Ma, J. T. & Wang, C. A. Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible. J. Power Sources 260, 109–144 (2014).

    Article  Google Scholar 

  23. 23.

    Thangadurai, V., Kaack, H. & Weppner, W. J. F. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). Cheminform 34, 437–440 (2003).

    Google Scholar 

  24. 24.

    O’Callaghan, M. P., Powell, A. S., Titman, J. J., Chen, G. Z. & Cussen, E. J. Switching on fast lithium ion conductivity in garnets: the structure and transport properties of Li3–xNd3Te2–xSbxO12. Chem. Mater. 20, 2360–2369 (2008).

    Article  Google Scholar 

  25. 25.

    Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

    Article  Google Scholar 

  26. 26.

    Jalem, R. et al. Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem. Mater. 25, 425–430 (2013).

    Article  Google Scholar 

  27. 27.

    Liu, Y. Y. et al. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. Sci. Adv. 3, eaao0713 (2017).

    Article  Google Scholar 

  28. 28.

    Lu, X., Xia, G., Lemmon, J. P. & Yang, Z. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives. J. Power Sources 195, 2431–2442 (2010).

    Article  Google Scholar 

  29. 29.

    Li, G. et al. Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density. Nat. Commun. 7, 10683 (2016).

    Article  Google Scholar 

  30. 30.

    Chang, H. J. et al. Development of intermediate temperature sodium nickel chloride rechargeable batteries using conventional polymer sealing technologies. J. Power Sources 348, 150–157 (2017).

    Article  Google Scholar 

  31. 31.

    Ding, M. S. et al. Change of conductivity with salt content, solvent composition, and temperature for electrolytes of LiPF6 in ethylene carbonate-ethyl methyl carbonate. J. Electrochem. Soc. 148, A1196–A1204 (2001).

    Article  Google Scholar 

  32. 32.

    Tietz, F. et al. Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12. Solid State Ion. 230, 77–82 (2013).

    Article  Google Scholar 

  33. 33.

    Jin, Y. & McGinn, P. J. Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J. Power Sources 196, 8683–8687 (2011).

    Article  Google Scholar 

  34. 34.

    Gasior, W., Moser, Z. & Zakulski, W. Bi-Li system thermodynamic properties and the phase diagram calculations. Arch. Metall. 39, 355–369 (1994).

    Google Scholar 

  35. 35.

    Liu, K. & Wang, C. A. Honeycomb-alumina supported garnet membrane: composite electrolyte with low resistance and high strength for lithium metal batteries. J. Power Sources 281, 399–403 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

Y.C. acknowledges support from the Joint Center for Energy Storage Research, a battery hub under the US Department of Energy. H.W. acknowledges support from the National Basic Research of China (Grants 2015CB932500), National Natural Science Foundations of China (grants 51661135025 and 51522207). C.A.W. acknowledges support from the National Natural Science Foundations of China (grant 51572145).

Author information

Affiliations

Authors

Contributions

Y.J., K.L., H.W. and Y.C. conceived the idea. Y.J. and K.L. designed the battery cells and conducted the electrochemical measurements. J.L. and Z.H. conducted SEM and XRD characterization. H.W. and Y.C. supervised the project. Y.J., K.L. D.Z., C.A.W., H.W. and Y.C. contributed to writing the manuscript. Y.J. and K.L. contributed equally to this work. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Hui Wu or Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–19 and Supplementary Tables 1–3

Supplementary Video 1

Vibration and impact experiment of the LLZTO tube

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Liu, K., Lang, J. et al. An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nat Energy 3, 732–738 (2018). https://doi.org/10.1038/s41560-018-0198-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing