Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles

Abstract

Burgeoning demands for mobility and private vehicle ownership undermine global efforts to reduce energy-related greenhouse gas emissions. Advanced vehicles powered by low-carbon sources of electricity or hydrogen offer an alternative to conventional fossil-fuelled technologies. Yet, despite ambitious pledges and investments by governments and automakers, it is by no means clear that these vehicles will ultimately reach mass-market consumers. Here, we develop state-of-the-art representations of consumer preferences in multiple global energy-economy models, specifically focusing on the non-financial preferences of individuals. We employ these enhanced model formulations to analyse the potential for a low-carbon vehicle revolution up to 2050. Our analysis shows that a diverse set of measures targeting vehicle buyers is necessary to drive widespread adoption of clean technologies. Carbon pricing alone is insufficient to bring low-carbon vehicles to the mass market, though it may have a supporting role in ensuring a decarbonized energy supply.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Share of EDVs in 2050.
Fig. 2: Marginal abatement cost for CO 2 emission reductions from light-duty vehicles.

References

  1. 1.

    Creutzig, F. et al. Transport: a roadblock to climate change mitigation? Science 350, 911–912 (2015).

    Article  Google Scholar 

  2. 2.

    Energy Technology Perspectives 2015: Mobilising Innovation to Accelerate Climate Action (International Energy Agency, 2015).

  3. 3.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to AR5 Ch. 6 (IPCC, 2014).

  4. 4.

    Global EV Outlook 2017 (International Energy Agency, 2017).

  5. 5.

    Vaughan, A. Electric and plug-in hybrid cars whiz past 3m mark worldwide. The Guardian (25 December 2017); https://www.theguardian.com/environment/2017/dec/25/electric-and-plug-in-hybrid-cars-3m-worldwide

  6. 6.

    Lutsey, N. Global Climate Change Mitigation Potential from a Transition to Electric Vehicles Working Paper 2015-5 (The International Council on Clean Transportation, 2015).

  7. 7.

    Lutsey, N. The world turns to electric vehicles. The International Council on Clean Transportation http://www.theicct.org/blogs/staff/world-turns-to-EVs (2016).

  8. 8.

    New Group strategy adopted: Volkswagen Group to become a world-leading provider of sustainable mobility. Volkswagen https://go.nature.com/2tJMlC6 (2016).

  9. 9.

    EV30@30 Campaign (Clean Energy Ministerial, 2017).

  10. 10.

    Paris Declaration on Electro-Mobility and Climate Change & Call to Action, Lima-Paris Action Agenda (United Nations Framework Convention on Climate Change, 2015).

  11. 11.

    Allcott, H. & Wozny, N. Gasoline prices, fuel economy, and the energy paradox. Rev. Econ. Stat. 96, 779–795 (2014).

    Article  Google Scholar 

  12. 12.

    Greene, D. L. Uncertainty, loss aversion, and markets for energy efficiency. Energy Econ. 33, 608–616 (2011).

    Article  Google Scholar 

  13. 13.

    Train, K. Discount rates in consumers’ energy-related decisions: a review of the literature. Energy 10, 1243–1253 (1985).

    Article  Google Scholar 

  14. 14.

    Avineri, E. On the use and potential of behavioural economics from the perspective of transport and climate change. J. Transp. Geogr. 24, 512–521 (2012).

    Article  Google Scholar 

  15. 15.

    Baltas, G., & Saridakis, C. An empirical investigation of the impact of behavioural and psychographic consumer characteristics on car preferences: an integrated model of car type choice. Transp. Res. A 54, 92–110 (2013).

    Google Scholar 

  16. 16.

    DellaVigna, S. Psychology and economics: evidence from the field. J. Econ. Lit. 47, 315–372 (2009).

    Article  Google Scholar 

  17. 17.

    Aini, M. S., Chan, S. C. & Syuhaily, O. Predictors of technical adoption and behavioural change to transport energy-saving measures in response to climate change. Energy Policy 61, 1055–1062 (2013).

    Article  Google Scholar 

  18. 18.

    Tran, M., Banister, D., Bishop, J. & McCulloch, M. Realizing the electric-vehicle revolution. Nat. Clim. Change 2, 328–333 (2012).

    Article  Google Scholar 

  19. 19.

    Rivers, N. & Jaccard, M. Useful models for simulating policies to induce technological change. Energy Policy 34, 2038–2047 (2006).

    Article  Google Scholar 

  20. 20.

    Axsen, J., Bailey, J. & Castro, M. A. Preference and lifestyle heterogeneity among potential plug-in electric vehicle buyers. Energy Econ. 50, 190–201 (2015).

    Article  Google Scholar 

  21. 21.

    Darzianazizi, A., Ghasemi, A. & Majd, M. Investigation of the consumers’ preferences about effective criteria in brand positioning: conjoint analysis approach. Aust. J. Basic Appl. Sci. 7, 70–78 (2013).

    Google Scholar 

  22. 22.

    Wu, W. Y., Liao, Y. K. & Chatwuthikrai, A. Applying conjoint analysis to evaluate consumer preferences toward subcompact cars. Expert Syst. Appl. 41, 2782–2792 (2014).

    Article  Google Scholar 

  23. 23.

    Turcksin, L., Mairesse, O. & Macharis, C. Private household demand for vehicles on alternative fuels and drive trains: a review. Eur. Transp. Res. Rev. 5, 149–164 (2013).

    Article  Google Scholar 

  24. 24.

    Needell, Z. A., McNerney, J., Chang, M. T. & Trancik, J. E. Potential for widespread electrification of personal vehicle travel in the United States. Nature Energy 1, 16112 (2016).

    Article  Google Scholar 

  25. 25.

    Lin, Z. Optimizing and diversifying electric vehicle driving range for U.S. drivers. Transp. Sci. 48, 635–650 (2014).

    Article  Google Scholar 

  26. 26.

    Wilson, C., Pettifor, H. & McCollum, D. Improving the Behavioural Realism of Integrated Assessment Models of Global Climate Change Mitigation: A Research Agenda. ADVANCE Project Deliverable No. 3.2 (Tyndall Centre for Climate Change Research and International Institute for Applied Systems Analysis, 2014); http://www.fp7-advance.eu

  27. 27.

    Mattauch, L., Ridgway, M. & Creutzig, F. Happy or liberal? Making sense of behavior in transport policy design. Transp. Res. D 45, 64–83 (2015).

    Article  Google Scholar 

  28. 28.

    Dijk, M., Kemp, R. & Valkering, P. Incorporating social context and co-evolution in an innovation diffusion model—with an application to cleaner vehicles. J. Evol. Econ. 23, 295–329 (2013).

    Article  Google Scholar 

  29. 29.

    Dimitropoulos, A., Rietveld, P. & van Ommeren, J. N. Consumer valuation of changes in driving range: a meta-analysis. Transp. Res. A 55, 27–45 (2013).

    Google Scholar 

  30. 30.

    Mercure, J. F. & Lam, A. The effectiveness of policy on consumer choices for private road passenger transport emissions reductions in six major economies. Environ. Res. Lett. 10, 064008 (2015).

    Article  Google Scholar 

  31. 31.

    Pettifor, H., Wilson, C., Axsen, J., Abrahamse, W. & Anable, J. Social influence in the global diffusion of alternative fuel vehicles – a meta-analysis. J. Transp. Geogr. 62, 247–261 (2017).

    Article  Google Scholar 

  32. 32.

    Jaccard, M. & Dennis, M. Estimating home energy decision parameters for a hybrid energy-economy policy model. Environ. Model. Assess. 11, 91–100 (2006).

    Article  Google Scholar 

  33. 33.

    McCollum, D. L. et al. Improving the behavioral realism of global integrated assessment models: an application to consumers’ vehicle choices. Transp. Res. D 55, 322–342 (2017).

    Article  Google Scholar 

  34. 34.

    Bunch, D. S., Ramea, K., Yeh, S. & Yang, C. Incorporating Behavioral Effects from Vehicle Choice Models into Bottom-Up Energy Sector Models. Research Report UCD-ITS-RR-15-13 (Institute of Transportation Studies, University of California, 2015).

  35. 35.

    Cameron, C. et al. Policy trade-offs between climate mitigation and clean cook-stove access in South Asia. Nat. Energy 1, 15010 (2016).

    Article  Google Scholar 

  36. 36.

    Daioglou, V., van Ruijven, B. J. & van Vuuren, D. P. Model projections for household energy use in developing countries. Energy 37, 601–615 (2012).

    Article  Google Scholar 

  37. 37.

    Li, F. & Strachan, N. Modelling energy transitions for climate targets under landscape and actor inertia. Environ. Innov. Soc. Transit. 24, 106–129 (2016).

    Article  Google Scholar 

  38. 38.

    Mercure, J.-F., Pollitt, H., Bassi, A. M., Viñuales, J. E. & Edwards, N. R. Modelling complex systems of heterogeneous agents to better design sustainability transitions policy. Glob. Environ. Change 37, 102–115 (2016).

    Article  Google Scholar 

  39. 39.

    Ramea, K. Integration of Vehicle Consumer Choice in Energy Systems Models and its Implications for Climate Policy Analysis. Doctoral Dissertation, University of California, Davis (2016)

  40. 40.

    Girod, B., van Vuuren, D. P. & de Vries, B. Influence of travel behavior on global CO2 emissions. Transp. Res. A 50, 183–197 (2013).

    Google Scholar 

  41. 41.

    Steg, L., Perlaviciute, G. & van der Werff, E. Understanding the human dimensions of a sustainable energy transition. Front. Psychol. 6, 805 (2015).

    Article  Google Scholar 

  42. 42.

    Bolderdijk, J. W. & Steg, L. in Handbook of Research in Sustainable Consumption (eds Reisch, L. A. & Thøgersen, J.) 328–342 (Edward Elgar Publishing Limited, Cheltenham, 2015).

  43. 43.

    Krey, V. Global energy-climate scenarios and models: a review. Energy Environ. 3, 363–383 (2014).

    Google Scholar 

  44. 44.

    Wilson, C. et al. Evaluating Process-Based Integrated Assessment Models of Climate Change Mitigation. IIASA Working Paper WP-17-007 (IIASA, 2017).

  45. 45.

    Lin, Z., Li, J. & Dong, J. Dynamic Wireless Charging: Potential Impact on Plug-in Electric Vehicle Adoption. SAE Technical Papers 2014-01-1965 (Society of Automotive Engineers, 2014).

  46. 46.

    Greene, D. L. & Ji, S. Policies for Promoting Low-Emission Vehicles and Fuels: Lessons from Recent Analyses (Howard H. Baker Center for Public Policy, University of Tennessee, 2016).

  47. 47.

    Nemet, G. F., Jakob, M., Steckel, J. C. & Edenhofer, O. Addressing policy credibility problems for low-carbon investment. Glob. Environ. Change 42, 47–57 (2017).

    Article  Google Scholar 

  48. 48.

    Global EV Outlook 2015. (International Energy Agency, Paris, 2015).

  49. 49.

    Wesseling, J. H. Explaining variance in national electric vehicle policies. Environ. Innov. Soc. Trans. 21, 28–38 (2016).

    Article  Google Scholar 

  50. 50.

    Transitions to Alternative Vehicles and Fuels (National Research Council, National Academies Press, Washington, DC, 2013).

  51. 51.

    Riahi, K. et al. in Global Energy Assessment - Toward a Sustainable Future 1203–1306 (2012).

  52. 52.

    Plevin, R. J., Delucchi, M. A. & Creutzig, F. Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J. Ind. Ecol. 18, 73–83 (2014).

    Article  Google Scholar 

  53. 53.

    GCAM v4.4 Documentation (Pacific Northwest National Laboratory, 2016); http://jgcri.github.io/gcam-doc/toc.html

  54. 54.

    Longden, T. Travel intensity and climate policy: the influence of different mobility futures on the diffusion of battery integrated vehicles. Energy Policy 72, 219–234 (2014).

    Article  Google Scholar 

  55. 55.

    Bosetti, V. & Longden, T. Light duty vehicle transportation and global climate policy: the importance of electric drive vehicles. Energy Policy 58, 209–219 (2013).

    Article  Google Scholar 

  56. 56.

    Pietzcker, R. C. et al. Long-term transport energy demand and climate policy: alternative visions on transport decarbonization in energy-economy models. Energy 64, 95–108 (2014).

    Article  Google Scholar 

  57. 57.

    Rösler, H., van der Zwaan, B., Keppo, I. & Bruggink, J. Electricity versus hydrogen for passenger cars under stringent climate change control. Sustain. Energy Technol. Assess. 5, 106–118 (2014).

    Google Scholar 

  58. 58.

    Energy Technology Perspectives 2017 (International Energy Agency, 2017).

  59. 59.

    Rai, V. & Henry, A. D. Agent-based modelling of consumer energy choices. Nat. Clim. Change 6, 556–562 (2016).

    Article  Google Scholar 

  60. 60.

    ADVANCE wiki: The Common Integrated Assessment Model (CIAM) Documentation(ADVANCE, 2017); http://themasites.pbl.nl/models/advance/index.php/ADVANCE_wiki

  61. 61.

    Kriegler, E. et al. What does the 2°C target imply for a global climate agreement in 2020? The LIMITS study on Durban Action Platform scenarios. Clim. Change Econ. 04, 1340008 (2013).

    Article  Google Scholar 

  62. 62.

    Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim. Change 123, 353–367 (2014).

    Article  Google Scholar 

  63. 63.

    Riahi, K. et al. Locked into Copenhagen pledges — implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Social. Change 90, 8–23 (2015).

    Article  Google Scholar 

  64. 64.

    Noppers, E. H., Keizer, K., Bockarjova, M. & Steg, L. The adoption of sustainable innovations: the role of instrumental, environmental, and symbolic attributes for earlier and later adopters. J. Environ. Psychol. 44, 74–84 (2015).

    Article  Google Scholar 

  65. 65.

    Noppers, E. H., Keizer, K., Bolderdijk, J. W. & Steg, L. The adoption of sustainable innovations: driven by symbolic and environmental motives. Glob. Environ. Change 25, 52–62 (2014).

    Article  Google Scholar 

  66. 66.

    Axsen, J. & Kurani, K. S. Interpersonal influence within car buyers’ social networks: applying five perspectives to plug-in hybrid vehicle drivers. Environ. Plan. A 44, 1047–1065 (2012).

    Article  Google Scholar 

  67. 67.

    Karkatsoulis, P., Siskos, P., Paroussos, L. & Capros, P. Simulating deep CO2 emission reduction in transport in a general equilibrium framework: the GEM-E3T model. Transp. Res. D 55, 343–358 (2017).

    Article  Google Scholar 

  68. 68.

    Capros, P. et al. GEM-E3 Model Documentation (2013); http://ftp.jrc.es/EURdoc/JRC83177.pdf

  69. 69.

    Waisman, H.-D., Guivarch, C. & Lecocq, F. The transportation sector and low-carbon growth pathways: modelling urban, infrastructure, and spatial determinants of mobility. Clim. Policy 13, 106–129 (2013).

    Article  Google Scholar 

  70. 70.

    Girod, B., van Vuuren, D. P. & Deetman, S. Global travel within the 2 °C climate target. Energy Policy 45, 152–166 (2012).

    Article  Google Scholar 

  71. 71.

    Anandarajah, G., Pye, S., Usher, W., Kesicki, F. & Mcglade, C. TIAM-UCL Global Model Documentation (UK Energy Research Centre, 2011).

  72. 72.

    Emmerling, J. et al. The WITCH2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways. (Fondazione Eni Enrico Mattei (FEEM), 2016).

  73. 73.

    Global EV Outlook 2016 (International Energy Agency, 2016).

  74. 74.

    World Vehicles in Operation (Ward’s Automotive Group, 2011); http://wardsauto.com/news-analysis/world-vehicle-population-tops-1-billion-units

  75. 75.

    Transportation Energy Data Book 34th edn (Oak Ridge National Laboratory, Oak Ridge, 2015).

  76. 76.

    Edwards, R., Larive, J.-F., Rickeard, D. & Weindorf, W. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Summary of energy and GHG balance of individual pathways, Well-to-Tank Appendix 2 - Version 4a. (European Commission, Joint Research Centre, Institute for Energy and Transport, 2014).

  77. 77.

    Malins, C., Galarza, S., Baral, A., Brandt, A. & Howorth, G. The Development of a Greenhouse Gas Emissions Calculation Methodology for Article 7a of the Fuel Quality Directive. Report to the Directorate General for Climate Action of the European Commission (The International Council on Clean Transportation, 2014).

  78. 78.

    Energy Redefined. Carbon Intensity of Crude Oil in Europe Crude (The International Council on Clean Transportation, 2010); https://www.theicct.org/publications/carbon-intensity-crude-oil-europe

  79. 79.

    Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) Ch. 11 (IPCC, Oxford, 2014).

  80. 80.

    Table 6. Carbon Intensity Lookup Table for Gasoline and Fuels that Substitute for Gasoline (California Air Resources Board, 2012).

Download references

Acknowledgements

We acknowledge funding provided by the ADVANCE project (FP7/2007–2013, grant agreement number 308329) of the European Commission. P. Kolp, D. Huppmann and M. Strubegger of IIASA provided critical assistance with MESSAGE-Transport model development. B. Girod (ETH-Zürich) helped with IMAGE model development. N. Lutsey of The International Council on Clean Transportation (ICCT) referred us to the most up-to-date information on AFV-supporting policies at the time of writing.

Author information

Affiliations

Authors

Contributions

D.L.M., C.W., V.K. and K. Riahi designed the research. H.P., C.W., Z.L. and K. Ramea contributed data for the modelling. D.L.M., M.B., E.ÓB., S.C., O.Y.E., J.E., C.G., P.K., I.K., V.K., L.P., K. Riahi, B.S.R. and D.P.v.V. implemented the modelling. D.L.M. wrote the manuscript, with all authors contributing.

Corresponding author

Correspondence to David L. McCollum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Supplementary Figures 1–18, Supplementary Discussion, Supplementary Methods, Supplementary References

Supplementary Data 1

Model assumptions for annual driving distances and consumer group splits by region

Supplementary Data 2

Model assumptions for (dis)utility costs by non-financial attribute, consumer group, vehicle technology and region

Supplementary Data 3

Model assumptions for capital costs of light-duty vehicles over time in each model’s USA region in the ‘AFV Push’ scenario with US$100 per tCO2 carbon pricing

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McCollum, D.L., Wilson, C., Bevione, M. et al. Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles. Nat Energy 3, 664–673 (2018). https://doi.org/10.1038/s41560-018-0195-z

Download citation

Further reading