Review Article | Published:

Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors

Nature Energyvolume 3pages828838 (2018) | Download Citation


Metal halide perovskite semiconductors possess excellent optoelectronic properties, allowing them to reach high solar cell performances. They have tunable bandgaps and can be rapidly and cheaply deposited from low-cost precursors, making them ideal candidate materials for tandem solar cells, either by using perovskites as the wide-bandgap top cell paired with low-bandgap silicon or copper indium diselenide bottom cells or by using both wide- and small-bandgap perovskite semiconductors to make all-perovskite tandem solar cells. This Review highlights the unique potential of perovskite tandem solar cells to reach solar-to-electricity conversion efficiencies far above those of single-junction solar cells at low costs. We discuss the recent developments in perovskite-based tandem fabrication, and detail directions for future research to take this technology beyond the proof-of-concept stage.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Fu, R., Feldman, D. J., Margolis, R. M., Woodhouse, M. A. & Ardani, K. B. US Solar Photovoltaic System Cost Benchmark: Q1 2017 (National Renewable Energy Laboratory, 2017).

  2. 2.

    Green, M. A. et al. Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25, 668–676 (2017).

  3. 3.

    Frank, D. et al. Wafer bonded four‐junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovolt. Res. Appl. 22, 277–282 (2014).

  4. 4.

    Chiu, P. T. et al. 35.8% space and 38.8% terrestrial 5J direct bonded cells. In IEEE 40th Photovoltaic Specialist Conference 11–13 (IEEE, 2014).

  5. 5.

    Contreras, M. A. et al. Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency. Prog. Photovolt. Res. Appl. 20, 843–850 (2012).

  6. 6.

    Meillaud, F., Shah, A., Droz, C., Vallat-Sauvain, E. & Miazza, C. Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells 90, 2952–2959 (2006).

  7. 7.

    Im, J.-H., Lee, C.-R., Lee, J.-W., Sang-Won, Park & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).

  8. 8.

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

  9. 9.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

  10. 10.

    Yang, M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2, 17038 (2017).

  11. 11.

    Momblona, C. et al. Efficient vacuum deposited pin and nip perovskite solar cells employing doped charge transport layers. Energy Environ. Sci. 9, 3456–3463 (2016).

  12. 12.

    Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 354, 861–865 (2016). This study presents a monolithic all-perovskite tandem solar cell with a low bandgap rear cell, 17% efficiency and promising stability.

  13. 13.

    Eperon, G. E. et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

  14. 14.

    Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).

  15. 15.

    Unger, E. L. et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A 5, 11401–11409 (2017).

  16. 16.

    Rajagopal, A. et al. Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 29, 1521–4095 (2017). This work demonstrates monolithic all-perovskite tandem solar cells with high voltages approaching 2 V, nearing the thermodynamic limit and demonstrating the potential of all-perovskite tandem solar cells.

  17. 17.

    Zhao, D. et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2, 17018 (2017).

  18. 18.

    Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017). This study presents the current record perovskite–silicon 2T tandem, made with perovskite front cells that can pass IEC standard accelerated aging tests at 85% relative humidity at 85 °C for 1,000 hours.

  19. 19.

    Duong, T. et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228 (2017). This work illustrates the use of a quadruple cation perovskite composition to make 26.4% 4T perovskite–silicon tandem solar cells, which is very close the single junction c-Si record efficiency of 26.6%.

  20. 20.

    Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

  21. 21.

    Best Research-Cell Efficiencies (NREL, 2018);

  22. 22.

    Yu, Z., Leilaeioun, M. & Holman, Z. Selecting tandem partners for silicon solar cells. Nat. Energy 1, 16137 (2016).

  23. 23.

    Taguchi, M. et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014).

  24. 24.

    Rajagopal, A., Liang, P.-W., Chueh, C.-C., Yang, Z. & Jen, A. K.-Y. Defect passivation via graded fullerene heterojunction in low bandgap Pb-Sn binary perovskite photovoltaics. ACS Energy Lett. 2, 2531–2539 (2017).

  25. 25.

    Noel, N. K. et al. Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. Joule 1, 328–343 (2017).

  26. 26.

    Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017).

  27. 27.

    Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016). In this paper, the authors present a wide bandgap (1.63 eV) perovskite composition with the highest voltage output of any existing efficient perovskite solar cell, making it suitable as a top cell for tandem applications.

  28. 28.

    Yang, W. S., Park, B., Jung, E. H. & Jeon, N. J. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. 1379, 1376–1379 (2017).

  29. 29.

    Maximilian Hoerantner, H. J. S. Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci. 10, 1983–1993 (2017).

  30. 30.

    Hörantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).

  31. 31.

    Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

  32. 32.

    Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).

  33. 33.

    Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497 (2018).

  34. 34.

    Yang, Z. et al. Stable low-bandgap PbSn binary perovskites for tandem solar cells. Adv. Mater. 28, 8990–8997 (2016).

  35. 35.

    Liao, W. et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138, 12360–12363 (2016).

  36. 36.

    Ogomi, Y. et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014).

  37. 37.

    Prasanna, R. et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017).

  38. 38.

    Zhao, B. et al. High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics. Adv. Mater. 29, 1604744 (2016).

  39. 39.

    Noel, N. K. et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).

  40. 40.

    Leijtens, T., Prasanna, R., Gold-Parker, A., Toney, M. F. & McGehee, M. D. Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett. 9, 2159–2165 (2017).

  41. 41.

    Werner, J. et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. J. Phys. Chem. Lett. 7, 161–166 (2016).

  42. 42.

    Albrecht, S. et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2016).

  43. 43.

    Bush, K. A. et al. Thermal and environmental stability of semi‐transparent perovskite solar cells for tandems enabled by a solution‐processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. (2016).

  44. 44.

    Sahli, F. et al. Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction. Adv. Energy Mater. 8, 1701609 (2018).

  45. 45.

    Wu, Y. et al. Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy Environ. Sci. 10, 2472–2479 (2017).

  46. 46.

    Leijtens, T. et al. Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963 (2015).

  47. 47.

    Brinkmann, K. O. et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nat. Commun. 8, 13938 (2017).

  48. 48.

    Leijtens, T. et al. Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 5, 11483–11500 (2017).

  49. 49.

    Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

  50. 50.

    Domanski, K. et al. Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016).

  51. 51.

    Kim, I. S. & Martinson, A. B. F. Stabilizing hybrid perovskites against moisture and temperature via non-hydrolytic atomic layer deposited overlayers. J. Mater. Chem. A 3, 20092–20096 (2015).

  52. 52.

    Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

  53. 53.

    Bella, F. et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354, 203–206 (2016).

  54. 54.

    Cotal, H. et al. III-V multijunction solar cells for concentrating photovoltaics. Energy Environ. Sci. 2, 174–192 (2009).

  55. 55.

    Takamoto, T., Ikeda, E., Kurita, H. & Ohmori, M. Over 30% efficient InGaP/GaAs tandem solar cells. Appl. Phys. Lett. 70, 381–383 (1997).

  56. 56.

    Chang, C. Y. et al. Highly efficient polymer tandem cells and semitransparent cells for solar energy. Adv. Energy Mater. 4, 1–6 (2014).

  57. 57.

    Jiang, F. et al. A two-terminal perovskite/perovskite tandem solar cell. J. Mater. Chem. A 4, 1208–1213 (2016).

  58. 58.

    Forgács, D. et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7, 1602121 (2017).

  59. 59.

    Mailoa, J. P. et al. A 2-terminal perovskite / silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106, 121105 (2015).

  60. 60.

    Yang, W. S. et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

  61. 61.

    Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

  62. 62.

    Margulis, G. Y., Hardin, B. E., Ding, I. K., Hoke, E. T. & McGehee, M. D. Parasitic absorption and internal quantum efficiency measurements of solid-state dye sensitized solar cells. Adv. Energy Mater. 3, 959–966 (2013).

  63. 63.

    Phillips, J. M. et al. Zinc‐indium‐oxide: a high conductivity transparent conducting oxide. Appl. Phys. Lett. 67, 2246–2248 (1995).

  64. 64.

    Rech, S. A. et al. Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells. J. Opt. 18, 64012 (2016).

  65. 65.

    Gordon, R. G. Criteria for choosing transparent conductors. MRS Bull. 25, 52–57 (2000).

  66. 66.

    Leenheer, A. J. et al. General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films. Phys. Rev. B 77, 115215 (2008).

  67. 67.

    Löper, P. et al. Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. Lett. 6, 66–71 (2015).

  68. 68.

    Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photon. 9, 106–112 (2015).

  69. 69.

    Ball, J. M. M. et al. Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8, 602–609 (2015).

  70. 70.

    Santbergen, R. et al. Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell. Opt. Express 24, A1288–A1299 (2016).

  71. 71.

    Manzoor, S. et al. Solar energy materials and solar cells improved light management in planar silicon and perovskite solar cells using PDMS scattering layer. Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).

  72. 72.

    Imec reports record conversion efficiency of 23.9 percent on a 4cm2 perovskite/silicon solar module. Imec (2017).

  73. 73.

    Yang, M. et al. Highly efficient perovskite solar modules by scalable fabrication and interconnection optimization. ACS Energy Lett. 3, 322–328 (2018).

  74. 74.

    Borchert, J. et al. Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells. ACS Energy Lett. 2, 2799–2804 (2017).

  75. 75.

    Jiang, Y. et al. Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability. Adv. Funct. Mater. 28, 1703835 (2018).

  76. 76.

    Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016).

  77. 77.

    Lee, J.-W. et al. Formamidinium and Cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

  78. 78.

    Sutton, R. J. et al. Bandgap‐tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6, 1502458 (2016).

  79. 79.

    Choi, H. et al. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7, 80–85 (2014).

  80. 80.

    Beal, R. E. et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016).

  81. 81.

    McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016). This study demonstrates a range of efficient wide bandgap perovskite composition by alloying formamidinium and cesium on the A site.

  82. 82.

    Cheacharoen, R. et al. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018).

  83. 83.

    deQuilettes, D. W. et al. Photo-induced halide redistribution in organic–inorganic perovskite films. Nat. Commun. 7, 11683 (2016).

  84. 84.

    Leijtens, T. et al. Mapping electric field – induced switchable polarization and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015).

  85. 85.

    Yun, J. S. et al. Critical role of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite solar cells. Adv. Energy Mater. 6, 1600330 (2016).

  86. 86.

    Takahashi, Y. et al. Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40, 5563–5568 (2011).

  87. 87.

    Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photon. 8, 489–494 (2014).

  88. 88.

    Rolston, N. et al. Mechanical integrity of solution-processed perovskite solar cells. Extrem. Mech. Lett. 9, 353–358 (2016).

  89. 89.

    Watson, B. L. et al. Cross-linkable, solvent-resistant fullerene contacts for robust and efficient perovskite solar cells with increased JSC and VOC. ACS Appl. Mater. Interfaces 8, 25896–25904 (2016).

  90. 90.

    Anthony, T. C., Fahrenbruch, A. L. & Bube, R. H. Growth of CdTe films by close-spaced vapor transport. J. Vac. Sci. Technol. A Vac., Surf. Film. 2, 1296–1302 (1984).

  91. 91.

    Werner, J. et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett. 1, 474–480 (2016).

  92. 92.

    Bailie, C. D. et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ. Sci. 8, 956–963 (2015).

  93. 93.

    Zhao, D. et al. Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett. 3, 305–306 (2018). This study gives a demonstration of an all-perovskite tandem solar cell (4T) exceeding the performance record of the best single-junction perovskite solar cell.

  94. 94.

    Song, Z. et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297–1305 (2017).

  95. 95.

    Chang, N. L. et al. A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Prog. Photovolt. Res. Appl. 25, 390–405 (2017).

  96. 96.

    Cai, M. et al. Cost-performance analysis of perovskite solar modules. Adv. Sci. 4, 1600269 (2017).

  97. 97.

    Horowitz, K. A. W., Fu, R. & Woodhouse, M. An analysis of glass–glass CIGS manufacturing costs. Sol. Energy Mater. Sol. Cells 154, 1–10 (2016).

  98. 98.

    Horowitz, K. A. W. & Woodhouse, M. Cost and potential of monolithic CIGS photovoltaic modules. In IEEE 42nd Photovoltaic Specialist Conference 1–6 (IEEE, 2015).

  99. 99.

    Woodhouse, M. et al. Perspectives on the pathways for cadmium telluride photovoltaic module manufacturers to address expected increases in the price for tellurium. Sol. Energy Mater. Sol. Cells 115, 199–212 (2013).

  100. 100.

    Werner, J., Niesen, B. & Ballif, C. Perovskite/silicon tandem solar cells: Marriage of convenience or true love story? – An overview. Adv. Mater. Interfaces 5, 1700731 (2017).

  101. 101.

    Duck, B. C. et al. Energy yield potential of perovskite-silicon tandem devices. In IEEE 43rd Photovoltaic Specialists Conference 1624–1629 (IEEE, 2016).

  102. 102.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961).

  103. 103.

    Sheng, R. et al. Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J. Phys. Chem. C. 119, 3545–3549 (2015).

  104. 104.

    Nam, J. K. et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells. Nano Lett. 17, 2028–2033 (2017).

Download references


We thank Department of Energy (DOE) SunShot and Office of Naval Research (ONR) for funding. T.L. is supported by a Marie Curie fellowship under Horizon 2020, and K.A.B. is supported by a National Science Foundation (NSF) fellowship.

Author information

Author notes

    • Tomas Leijtens

    Present address: Materials Science Center, National Renewable Energy Laboratory, Golden, CO, USA


  1. Materials Science and Engineering, Stanford University, Stanford, CA, USA

    • Tomas Leijtens
    • , Kevin A. Bush
    • , Rohit Prasanna
    •  & Michael D. McGehee


  1. Search for Tomas Leijtens in:

  2. Search for Kevin A. Bush in:

  3. Search for Rohit Prasanna in:

  4. Search for Michael D. McGehee in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Tomas Leijtens or Michael D. McGehee.

Supplementary information

  1. Supplementary Tables 1–2

    Supplementary Table 1 provides the bandgap, open-circuit voltage, power conversion efficiency and reference for the data points in Fig. 1c. Supplementary Table 2 provides the bandgap, open-circuit voltage, power conversion efficiency and reference for each data point in Fig. 2b

About this article

Publication history