Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors

Abstract

Metal halide perovskite semiconductors possess excellent optoelectronic properties, allowing them to reach high solar cell performances. They have tunable bandgaps and can be rapidly and cheaply deposited from low-cost precursors, making them ideal candidate materials for tandem solar cells, either by using perovskites as the wide-bandgap top cell paired with low-bandgap silicon or copper indium diselenide bottom cells or by using both wide- and small-bandgap perovskite semiconductors to make all-perovskite tandem solar cells. This Review highlights the unique potential of perovskite tandem solar cells to reach solar-to-electricity conversion efficiencies far above those of single-junction solar cells at low costs. We discuss the recent developments in perovskite-based tandem fabrication, and detail directions for future research to take this technology beyond the proof-of-concept stage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of theoretical tandem performance limits and current best devices.
Fig. 2: Losses in wide-bandgap perovskite solar cells.
Fig. 3: Typical tandem process flow.
Fig. 4: State-of-the-art tandem architectures.

Similar content being viewed by others

References

  1. Fu, R., Feldman, D. J., Margolis, R. M., Woodhouse, M. A. & Ardani, K. B. US Solar Photovoltaic System Cost Benchmark: Q1 2017 (National Renewable Energy Laboratory, 2017).

  2. Green, M. A. et al. Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25, 668–676 (2017).

    Article  Google Scholar 

  3. Frank, D. et al. Wafer bonded four‐junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovolt. Res. Appl. 22, 277–282 (2014).

    Article  Google Scholar 

  4. Chiu, P. T. et al. 35.8% space and 38.8% terrestrial 5J direct bonded cells. In IEEE 40th Photovoltaic Specialist Conference 11–13 (IEEE, 2014).

  5. Contreras, M. A. et al. Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency. Prog. Photovolt. Res. Appl. 20, 843–850 (2012).

    Article  Google Scholar 

  6. Meillaud, F., Shah, A., Droz, C., Vallat-Sauvain, E. & Miazza, C. Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells 90, 2952–2959 (2006).

    Article  Google Scholar 

  7. Im, J.-H., Lee, C.-R., Lee, J.-W., Sang-Won, Park & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).

    Article  Google Scholar 

  8. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  Google Scholar 

  9. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  10. Yang, M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2, 17038 (2017).

    Article  Google Scholar 

  11. Momblona, C. et al. Efficient vacuum deposited pin and nip perovskite solar cells employing doped charge transport layers. Energy Environ. Sci. 9, 3456–3463 (2016).

    Article  Google Scholar 

  12. Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 354, 861–865 (2016). This study presents a monolithic all-perovskite tandem solar cell with a low bandgap rear cell, 17% efficiency and promising stability.

    Article  Google Scholar 

  13. Eperon, G. E. et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    Article  Google Scholar 

  14. Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).

    Article  Google Scholar 

  15. Unger, E. L. et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A 5, 11401–11409 (2017).

    Article  Google Scholar 

  16. Rajagopal, A. et al. Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 29, 1521–4095 (2017). This work demonstrates monolithic all-perovskite tandem solar cells with high voltages approaching 2 V, nearing the thermodynamic limit and demonstrating the potential of all-perovskite tandem solar cells.

    Article  Google Scholar 

  17. Zhao, D. et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2, 17018 (2017).

    Article  Google Scholar 

  18. Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017). This study presents the current record perovskite–silicon 2T tandem, made with perovskite front cells that can pass IEC standard accelerated aging tests at 85% relative humidity at 85 °C for 1,000 hours.

    Article  Google Scholar 

  19. Duong, T. et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228 (2017). This work illustrates the use of a quadruple cation perovskite composition to make 26.4% 4T perovskite–silicon tandem solar cells, which is very close the single junction c-Si record efficiency of 26.6%.

    Article  Google Scholar 

  20. Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    Article  Google Scholar 

  21. Best Research-Cell Efficiencies (NREL, 2018); https://www.nrel.gov/pv/assets/images/efficiency-chart.png

  22. Yu, Z., Leilaeioun, M. & Holman, Z. Selecting tandem partners for silicon solar cells. Nat. Energy 1, 16137 (2016).

    Article  Google Scholar 

  23. Taguchi, M. et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014).

    Article  Google Scholar 

  24. Rajagopal, A., Liang, P.-W., Chueh, C.-C., Yang, Z. & Jen, A. K.-Y. Defect passivation via graded fullerene heterojunction in low bandgap Pb-Sn binary perovskite photovoltaics. ACS Energy Lett. 2, 2531–2539 (2017).

    Article  Google Scholar 

  25. Noel, N. K. et al. Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. Joule 1, 328–343 (2017).

    Article  Google Scholar 

  26. Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017).

    Article  Google Scholar 

  27. Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016). In this paper, the authors present a wide bandgap (1.63 eV) perovskite composition with the highest voltage output of any existing efficient perovskite solar cell, making it suitable as a top cell for tandem applications.

    Article  Google Scholar 

  28. Yang, W. S., Park, B., Jung, E. H. & Jeon, N. J. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. 1379, 1376–1379 (2017).

  29. Maximilian Hoerantner, H. J. S. Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci. 10, 1983–1993 (2017).

    Article  Google Scholar 

  30. Hörantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).

    Article  Google Scholar 

  31. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  Google Scholar 

  32. Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).

    Article  Google Scholar 

  33. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497 (2018).

    Article  Google Scholar 

  34. Yang, Z. et al. Stable low-bandgap PbSn binary perovskites for tandem solar cells. Adv. Mater. 28, 8990–8997 (2016).

    Article  Google Scholar 

  35. Liao, W. et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138, 12360–12363 (2016).

    Article  Google Scholar 

  36. Ogomi, Y. et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014).

    Article  Google Scholar 

  37. Prasanna, R. et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017).

    Article  Google Scholar 

  38. Zhao, B. et al. High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics. Adv. Mater. 29, 1604744 (2016).

    Article  Google Scholar 

  39. Noel, N. K. et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).

    Article  Google Scholar 

  40. Leijtens, T., Prasanna, R., Gold-Parker, A., Toney, M. F. & McGehee, M. D. Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett. 9, 2159–2165 (2017).

    Article  Google Scholar 

  41. Werner, J. et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. J. Phys. Chem. Lett. 7, 161–166 (2016).

    Article  Google Scholar 

  42. Albrecht, S. et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2016).

    Article  Google Scholar 

  43. Bush, K. A. et al. Thermal and environmental stability of semi‐transparent perovskite solar cells for tandems enabled by a solution‐processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. (2016).

  44. Sahli, F. et al. Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction. Adv. Energy Mater. 8, 1701609 (2018).

    Article  Google Scholar 

  45. Wu, Y. et al. Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy Environ. Sci. 10, 2472–2479 (2017).

    Article  Google Scholar 

  46. Leijtens, T. et al. Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963 (2015).

    Article  Google Scholar 

  47. Brinkmann, K. O. et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nat. Commun. 8, 13938 (2017).

    Article  Google Scholar 

  48. Leijtens, T. et al. Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 5, 11483–11500 (2017).

    Article  Google Scholar 

  49. Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  Google Scholar 

  50. Domanski, K. et al. Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016).

    Article  Google Scholar 

  51. Kim, I. S. & Martinson, A. B. F. Stabilizing hybrid perovskites against moisture and temperature via non-hydrolytic atomic layer deposited overlayers. J. Mater. Chem. A 3, 20092–20096 (2015).

    Article  Google Scholar 

  52. Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

    Article  Google Scholar 

  53. Bella, F. et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354, 203–206 (2016).

    Article  Google Scholar 

  54. Cotal, H. et al. III-V multijunction solar cells for concentrating photovoltaics. Energy Environ. Sci. 2, 174–192 (2009).

    Article  Google Scholar 

  55. Takamoto, T., Ikeda, E., Kurita, H. & Ohmori, M. Over 30% efficient InGaP/GaAs tandem solar cells. Appl. Phys. Lett. 70, 381–383 (1997).

    Article  Google Scholar 

  56. Chang, C. Y. et al. Highly efficient polymer tandem cells and semitransparent cells for solar energy. Adv. Energy Mater. 4, 1–6 (2014).

    Google Scholar 

  57. Jiang, F. et al. A two-terminal perovskite/perovskite tandem solar cell. J. Mater. Chem. A 4, 1208–1213 (2016).

    Article  Google Scholar 

  58. Forgács, D. et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7, 1602121 (2017).

    Article  Google Scholar 

  59. Mailoa, J. P. et al. A 2-terminal perovskite / silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106, 121105 (2015).

    Article  Google Scholar 

  60. Yang, W. S. et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  Google Scholar 

  61. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  Google Scholar 

  62. Margulis, G. Y., Hardin, B. E., Ding, I. K., Hoke, E. T. & McGehee, M. D. Parasitic absorption and internal quantum efficiency measurements of solid-state dye sensitized solar cells. Adv. Energy Mater. 3, 959–966 (2013).

    Article  Google Scholar 

  63. Phillips, J. M. et al. Zinc‐indium‐oxide: a high conductivity transparent conducting oxide. Appl. Phys. Lett. 67, 2246–2248 (1995).

    Article  Google Scholar 

  64. Rech, S. A. et al. Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells. J. Opt. 18, 64012 (2016).

    Article  Google Scholar 

  65. Gordon, R. G. Criteria for choosing transparent conductors. MRS Bull. 25, 52–57 (2000).

    Article  Google Scholar 

  66. Leenheer, A. J. et al. General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films. Phys. Rev. B 77, 115215 (2008).

    Article  Google Scholar 

  67. Löper, P. et al. Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. Lett. 6, 66–71 (2015).

    Article  Google Scholar 

  68. Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photon. 9, 106–112 (2015).

    Article  Google Scholar 

  69. Ball, J. M. M. et al. Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8, 602–609 (2015).

    Article  Google Scholar 

  70. Santbergen, R. et al. Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell. Opt. Express 24, A1288–A1299 (2016).

    Article  Google Scholar 

  71. Manzoor, S. et al. Solar energy materials and solar cells improved light management in planar silicon and perovskite solar cells using PDMS scattering layer. Sol. Energy Mater. Sol. Cells 173, 59–65 (2017).

    Article  MathSciNet  Google Scholar 

  72. Imec reports record conversion efficiency of 23.9 percent on a 4cm2 perovskite/silicon solar module. Imec https://go.nature.com/2H5hNiK (2017).

  73. Yang, M. et al. Highly efficient perovskite solar modules by scalable fabrication and interconnection optimization. ACS Energy Lett. 3, 322–328 (2018).

    Article  Google Scholar 

  74. Borchert, J. et al. Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells. ACS Energy Lett. 2, 2799–2804 (2017).

    Article  Google Scholar 

  75. Jiang, Y. et al. Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability. Adv. Funct. Mater. 28, 1703835 (2018).

    Article  Google Scholar 

  76. Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016).

    Article  Google Scholar 

  77. Lee, J.-W. et al. Formamidinium and Cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

    Article  Google Scholar 

  78. Sutton, R. J. et al. Bandgap‐tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6, 1502458 (2016).

    Article  Google Scholar 

  79. Choi, H. et al. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7, 80–85 (2014).

    Article  Google Scholar 

  80. Beal, R. E. et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016).

    Article  Google Scholar 

  81. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016). This study demonstrates a range of efficient wide bandgap perovskite composition by alloying formamidinium and cesium on the A site.

    Article  Google Scholar 

  82. Cheacharoen, R. et al. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018).

    Article  Google Scholar 

  83. deQuilettes, D. W. et al. Photo-induced halide redistribution in organic–inorganic perovskite films. Nat. Commun. 7, 11683 (2016).

    Article  Google Scholar 

  84. Leijtens, T. et al. Mapping electric field – induced switchable polarization and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015).

    Article  Google Scholar 

  85. Yun, J. S. et al. Critical role of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite solar cells. Adv. Energy Mater. 6, 1600330 (2016).

    Article  Google Scholar 

  86. Takahashi, Y. et al. Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40, 5563–5568 (2011).

    Article  Google Scholar 

  87. Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photon. 8, 489–494 (2014).

    Article  Google Scholar 

  88. Rolston, N. et al. Mechanical integrity of solution-processed perovskite solar cells. Extrem. Mech. Lett. 9, 353–358 (2016).

    Article  Google Scholar 

  89. Watson, B. L. et al. Cross-linkable, solvent-resistant fullerene contacts for robust and efficient perovskite solar cells with increased JSC and VOC. ACS Appl. Mater. Interfaces 8, 25896–25904 (2016).

    Article  Google Scholar 

  90. Anthony, T. C., Fahrenbruch, A. L. & Bube, R. H. Growth of CdTe films by close-spaced vapor transport. J. Vac. Sci. Technol. A Vac., Surf. Film. 2, 1296–1302 (1984).

    Article  Google Scholar 

  91. Werner, J. et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett. 1, 474–480 (2016).

    Article  Google Scholar 

  92. Bailie, C. D. et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ. Sci. 8, 956–963 (2015).

    Article  Google Scholar 

  93. Zhao, D. et al. Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett. 3, 305–306 (2018). This study gives a demonstration of an all-perovskite tandem solar cell (4T) exceeding the performance record of the best single-junction perovskite solar cell.

    Article  Google Scholar 

  94. Song, Z. et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297–1305 (2017).

    Article  Google Scholar 

  95. Chang, N. L. et al. A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Prog. Photovolt. Res. Appl. 25, 390–405 (2017).

    Article  Google Scholar 

  96. Cai, M. et al. Cost-performance analysis of perovskite solar modules. Adv. Sci. 4, 1600269 (2017).

    Article  Google Scholar 

  97. Horowitz, K. A. W., Fu, R. & Woodhouse, M. An analysis of glass–glass CIGS manufacturing costs. Sol. Energy Mater. Sol. Cells 154, 1–10 (2016).

    Article  Google Scholar 

  98. Horowitz, K. A. W. & Woodhouse, M. Cost and potential of monolithic CIGS photovoltaic modules. In IEEE 42nd Photovoltaic Specialist Conference 1–6 (IEEE, 2015).

  99. Woodhouse, M. et al. Perspectives on the pathways for cadmium telluride photovoltaic module manufacturers to address expected increases in the price for tellurium. Sol. Energy Mater. Sol. Cells 115, 199–212 (2013).

    Article  Google Scholar 

  100. Werner, J., Niesen, B. & Ballif, C. Perovskite/silicon tandem solar cells: Marriage of convenience or true love story? – An overview. Adv. Mater. Interfaces 5, 1700731 (2017).

    Article  Google Scholar 

  101. Duck, B. C. et al. Energy yield potential of perovskite-silicon tandem devices. In IEEE 43rd Photovoltaic Specialists Conference 1624–1629 (IEEE, 2016).

  102. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961).

    Article  Google Scholar 

  103. Sheng, R. et al. Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J. Phys. Chem. C. 119, 3545–3549 (2015).

    Article  Google Scholar 

  104. Nam, J. K. et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells. Nano Lett. 17, 2028–2033 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Department of Energy (DOE) SunShot and Office of Naval Research (ONR) for funding. T.L. is supported by a Marie Curie fellowship under Horizon 2020, and K.A.B. is supported by a National Science Foundation (NSF) fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomas Leijtens or Michael D. McGehee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables 1–2

Supplementary Table 1 provides the bandgap, open-circuit voltage, power conversion efficiency and reference for the data points in Fig. 1c. Supplementary Table 2 provides the bandgap, open-circuit voltage, power conversion efficiency and reference for each data point in Fig. 2b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leijtens, T., Bush, K.A., Prasanna, R. et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy 3, 828–838 (2018). https://doi.org/10.1038/s41560-018-0190-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0190-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing