Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors

Abstract

The field of non-fullerene organic solar cells has experienced rapid development during the past few years, mainly driven by the development of novel non-fullerene acceptors and matching donor semiconductors. However, organic solar cell material development has progressed via a trial-and-error approach with limited understanding of the materials’ structure–property relationships and the underlying device physics of non-fullerene devices. In addition, the availability of hundreds of donor and acceptor semiconductors creates an extremely large pool of possible donor–acceptor combinations, which poses a daunting challenge for rational material screening and matching. This Review describes several important conceptual aspects of the emerging non-fullerene devices by highlighting key contributions that provided fundamental insights regarding rational material design, donor–acceptor pair matching, blend morphology control and the reduced voltage losses in non-fullerene organic solar cells. We also discuss the key challenges that need to be addressed to develop more-efficient non-fullerene organic solar cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The voltage loss of solar cells.
Fig. 2: PDI-based non-fullerene small molecular acceptors.
Fig. 3: IDT-based non-fullerene small molecular acceptors.
Fig. 4: SubPc-based non-fullerene small molecular acceptors for vacuum-deposited OSCs.
Fig. 5: Comparisons between pure/crystalline and impure/amorphous domains in BHJ blends.
Fig. 6: Morphology control using donor polymers with temperature-dependent aggregation.
Fig. 7: Burn-in losses of fullerene and non-fullerene OSCs.

Similar content being viewed by others

References

  1. Lu, L. et al. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115, 12666–12731 (2015).

    Article  Google Scholar 

  2. Dou, L., Liu, Y., Hong, Z., Li, G. & Yang, Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115, 12633–12665 (2015).

    Article  Google Scholar 

  3. He, Y. & Li, Y. Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 13, 1970–1983 (2011).

    Article  Google Scholar 

  4. Liu, Y. et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).

    Article  Google Scholar 

  5. Zhao, J. B. et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016).

    Article  Google Scholar 

  6. He, Y., Chen, H.-Y., Hou, J. & Li, Y. Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. J. Am. Chem. Soc. 132, 1377–1382 (2010).

    Article  Google Scholar 

  7. Cheng, P. & Zhan, X. Stability of organic solar cells: challenges and strategies. Chem. Soc. Rev. 45, 2544–2582 (2016).

    Article  Google Scholar 

  8. Koetse, M. M. et al. Efficient polymer:polymer bulk heterojunction solar cells. Appl. Phys. Lett. 88, 083504 (2006).

    Article  Google Scholar 

  9. Zhan, X. et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J. Am. Chem. Soc. 129, 7246–7247 (2007).

    Article  Google Scholar 

  10. Dittmer, J. J., Marseglia, E. A. & Friend, R. H. Electron trapping in dye/polymer blend photovoltaic cells. Adv. Mater. 12, 1270–1274 (2000).

    Article  Google Scholar 

  11. Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).

    Article  Google Scholar 

  12. Zhao, W. et al. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148–7151 (2017). This paper demonstrates the significance of molecular optimization of both donor polymers and small molecular acceptors via fluorination to improve device performances.

    Article  Google Scholar 

  13. He, Z. C. et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photon. 9, 174–179 (2015).

    Article  Google Scholar 

  14. Kawashima, K., Tamai, Y., Ohkita, H., Osaka, I. & Takimiya, K. High-efficiency polymer solar cells with small photon energy loss. Nat. Commun. 6, 10085 (2015).

    Article  Google Scholar 

  15. Ran, N. A. et al. Harvesting the full potential of photons with organic solar cells. Adv. Mater. 28, 1482–1488 (2016).

    Article  Google Scholar 

  16. Li, W., Hendriks, K. H., Furlan, A., Wienk, M. M. & Janssen, R. A. High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV. J. Am. Chem. Soc. 137, 2231–2234 (2015).

    Article  Google Scholar 

  17. Baran, D. et al. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with 1 V open circuit voltages. Energy Environ. Sci. 9, 3783–3793 (2016).

    Article  Google Scholar 

  18. Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016). This paper, along with ref. 17, reports efficient non-fullerene organic solar cells with minimal driving forces and low voltage losses.

    Article  Google Scholar 

  19. Yao, H. F. et al. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew. Chem. Int. Ed. 56, 3045–3049 (2017).

    Article  Google Scholar 

  20. Zhang, J. et al. Ring-fusion of perylene diimide acceptor enabling efficient nonfullerene organic solar cells with a small voltage loss. J. Am. Chem. Soc. 139, 16092–16095 (2017).

    Article  Google Scholar 

  21. Xu, X. et al. Realizing over 13% efficiency in green-solvent-processed nonfullerene organic solar cells enabled by 1,3,4-thiadiazole-based wide-bandgap copolymers. Adv. Mater. 30, 1703973 (2018).

    Article  Google Scholar 

  22. Lin, Y. et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015). This paper is on efficient low-bandgap indacenodithiophene-based small molecular acceptors that boost the development of highly efficient non-fullerene organic solar cells.

    Article  Google Scholar 

  23. Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017).

    Article  Google Scholar 

  24. Hendsbee, A. D. et al. Synthesis, self-assembly, and solar cell performance of N-annulated perylene diimide non-fullerene acceptors. Chem. Mater. 28, 7098–7109 (2016).

    Article  Google Scholar 

  25. Gregg, B. A. & Hanna, M. C. Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J. Appl. Phys. 93, 3605–3614 (2003).

    Article  Google Scholar 

  26. Scharber, M. C. & Sariciftci, N. S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 38, 1929–1940 (2013).

    Article  Google Scholar 

  27. Yao, J. Z. et al. Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015).

    Article  Google Scholar 

  28. Credgington, D. & Durrant, J. R. Insights from transient optoelectronic analyses on the open-circuit voltage of organic solar cells. J. Phys. Chem. Lett. 3, 1465–1478 (2012).

    Article  Google Scholar 

  29. Lakhwani, G., Rao, A. & Friend, R. H. Bimolecular recombination in organic photovoltaics. Annu. Rev. Phys. Chem. 65, 557–581 (2014).

    Article  Google Scholar 

  30. Bin, H. et al. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 7, 13651 (2016).

    Article  Google Scholar 

  31. Zhao, W. et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 4734–4739 (2016).

    Article  Google Scholar 

  32. Chen, S. et al. A Wide-bandgap donor polymer for highly efficient non-fullerene organic solar cells with a small voltage loss. J. Am. Chem. Soc. 139, 6298–6301 (2017).

    Article  Google Scholar 

  33. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltiac cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  Google Scholar 

  34. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  Google Scholar 

  35. Shu, Y. et al. A survey of electron-deficient pentacenes as acceptors in polymer bulk heterojunction solar cells. Chem. Sci. 2, 363–368 (2011).

    Article  Google Scholar 

  36. Rajaram, S., Shivanna, R., Kandappa, S. K. & Narayan, K. S. Nonplanar perylene diimides as potential alternatives to fullerenes in organic solar cells. J. Phys. Chem. Lett. 3, 2405–2408 (2012).

    Article  Google Scholar 

  37. Bloking, J. T. et al. Comparing the device physics and morphology of polymer solar cells employing fullerenes and non-fullerene acceptors. Adv. Energy Mater. 4, 1301426 (2014).

    Article  Google Scholar 

  38. Wang, X. et al. Dimeric naphthalene diimide based small molecule acceptors: synthesis, characterization, and photovoltaic properties. Tetrahedron 70, 4726–4731 (2014).

    Article  Google Scholar 

  39. Kim, Y. et al. Organic photovoltaic devices based on blends of regioregular poly(3-hexylthiophene) and poly(9.9-dioctylfluorene-co-benzothiadiazole). Chem. Mater. 16, 4812–4818 (2004).

    Article  Google Scholar 

  40. Meng, D. et al. High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor. J. Am. Chem. Soc. 138, 375–380 (2016).

    Article  Google Scholar 

  41. Sun, D. et al. Non-fullerene-acceptor-based bulk-heterojunction organic solar cells with efficiency over 7%. J. Am. Chem. Soc. 137, 11156–11162 (2015).

    Article  Google Scholar 

  42. Zang, Y. et al. Integrated molecular, interfacial, and device engineering towards high-performance non-fullerene based organic solar cells. Adv. Mater. 26, 5708–5714 (2014).

    Article  Google Scholar 

  43. Liu, Y. et al. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells. Adv. Mater. 27, 1015–1020 (2015).

    Article  Google Scholar 

  44. Lin, H. et al. Reduced intramolecular twisting improves the performance of 3D molecular acceptors in non-fullerene organic solar cells. Adv. Mater. 28, 8546–8551 (2016).

    Article  Google Scholar 

  45. Wu, Q., Zhao, D., Schneider, A. M., Chen, W. & Yu, L. Covalently bound clusters of alpha-substituted PDI-rival electron acceptors to fullerene for organic solar cells. J. Am. Chem. Soc. 138, 7248–7251 (2016).

    Article  Google Scholar 

  46. Zhong, Y. et al. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells. Nat. Commun. 6, 8242 (2015). This paper, along with refs 20 and 48, reports promising perylene-diimide-based small molecular acceptors by the ring-fusing strategy.

    Article  Google Scholar 

  47. Zhong, Y. et al. Efficient organic solar cells with helical perylene diimide electron acceptors. J. Am. Chem. Soc. 136, 15215–15221 (2014).

    Article  Google Scholar 

  48. Meng, D. et al. Three-bladed rylene propellers with three-dimensional network assembly for organic electronics. J. Am. Chem. Soc. 138, 10184–10190 (2016).

    Article  Google Scholar 

  49. Wu, Q. H. et al. Propeller-shaped acceptors for high-performance non-fullerene solar cells: importance of the rigidity of molecular geometry. Chem. Mater. 29, 1127–1133 (2017).

    Article  Google Scholar 

  50. Li, S. et al. Design of a new small-molecule electron acceptor enables efficient polymer solar cells with high fill factor. Adv. Mater. 29, 1704051 (2017).

    Article  Google Scholar 

  51. Xie, D. et al. A Novel thiophene-fused ending group enabling an excellent small molecule acceptor for high-performance fullerene-free polymer solar cells with 11.8% efficiency. Solar RRL 1, 1700044 (2017).

    Article  Google Scholar 

  52. Lin, Y. Z. et al. Structure evolution of oligomer fused-ring electron acceptors toward high efficiency of as-cast polymer solar cells. Adv. Energy Mater. 6, 1600854 (2016).

    Article  Google Scholar 

  53. Dai, S. et al. Fused nonacyclic electron acceptors for efficient polymer solar cells. J. Am. Chem. Soc. 139, 1336–1343 (2017).

    Article  Google Scholar 

  54. Lin, Y. et al. High-performance electron acceptor with thienyl side chains for organic photovoltaics. J. Am. Chem. Soc. 138, 4955–4961 (2016).

    Article  Google Scholar 

  55. Lin, Y. et al. A Facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J. Am. Chem. Soc. 138, 2973–2976 (2016).

    Article  Google Scholar 

  56. Li, S. et al. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 28, 9423–9429 (2016).

    Article  Google Scholar 

  57. Li, S. et al. Significant influence of the methoxyl substitution position on optoelectronic properties and molecular packing of small-molecule electron acceptors for photovoltaic cells. Adv. Energy Mater 7, 1700183 (2017).

    Article  Google Scholar 

  58. Li, T. Y. et al. Small molecule near-infrared boron dipyrromethene donors for organic tandem solar cells. J. Am. Chem. Soc. 139, 13636–13639 (2017).

    Article  Google Scholar 

  59. Heliatek sets new OPV world record efficiency of 13.2% Heliatek https://go.nature.com/2scgHMY (2016).

  60. Claessens, C. G., Gonzalez-Rodriguez, D., Rodriguez-Morgade, M. S., Medina, A. & Torres, T. Subphthalocyanines, subporphyrazines, and subporphyrins: singular nonplanar aromatic systems. Chem. Rev. 114, 2192–2277 (2014).

    Article  Google Scholar 

  61. de la Torre, G., Bottari, G. & Torres, T. Phthalocyanines and subphthalocyanines: Perfect partners for fullerenes and carbon nanotubes in molecular photovoltaics. Adv. Energy Mater. 7, 1601700 (2017).

    Article  Google Scholar 

  62. Cnops, K. et al. 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5, 3406 (2014).

    Article  Google Scholar 

  63. Cnops, K. et al. Energy level tuning of non-fullerene acceptors in organic solar cells. J. Am. Chem. Soc. 137, 8991–8997 (2015).

    Article  Google Scholar 

  64. Kobayashi, N., Ishizaki, T., Ishii, K. & Konami, H. Synthesis, spectroscopy, and molecular orbital calculations of subazaporphyrins, subphthalocyanines, subnaphthalocyanines, and compounds derived therefrom by ring expansion. J. Am. Chem. Soc. 121, 9096–9110 (1999).

    Article  Google Scholar 

  65. Verreet, B. et al. A 4% Efficient organic solar cell using a fluorinated fused subphthalocyanine dimer as an electron acceptor. Adv. Energy Mater. 1, 565–568 (2011).

    Article  Google Scholar 

  66. Li, Z. et al. Donor polymer design enables efficient non-fullerene organic solar cells. Nat. Commun. 7, 13094 (2016).

    Article  Google Scholar 

  67. Zhou, N. J. et al. Morphology-performance relationships in high-efficiency all-polymer solar cells. Adv. Energy Mater. 4, 1300785 (2014).

    Article  Google Scholar 

  68. Bauer, N. et al. Comparing non-fullerene acceptors with fullerene in polymer solar cells: a case study with FTAZ and PyCNTAZ. J. Mater. Chem. A 5, 4886–4893 (2017).

    Article  Google Scholar 

  69. Ye, L. et al. High-efficiency nonfullerene organic solar cells: critical factors that affect complex multi-length scale morphology and device performance. Adv. Energy Mater. 7, 1602000 (2017).

    Article  Google Scholar 

  70. Bin, H. et al. 9.73% Efficiency nonfullerene all organic small molecule solar cells with absorption-complementary donor and acceptor. J. Am. Chem. Soc. 139, 5085–5094 (2017).

    Article  Google Scholar 

  71. Ye, L. et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 17, 253–260 (2018). This paper quantitatively correlates the Flory–Huggins interaction parameters, domain purity and device fill factors and provides a convenient method to pre-screen the promising donor–acceptor material combinations.

    Article  Google Scholar 

  72. Hu, H. et al. Design of donor polymers with strong temperature-dependent aggregation property for efficient organic photovoltaics. Acc. Chem. Res. 50, 2519–2528 (2017).

    Article  Google Scholar 

  73. Hu, H. et al. Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells. J. Am. Chem. Soc. 137, 14149–14157 (2015).

    Article  Google Scholar 

  74. Qian, D. P. et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules 45, 9611–9617 (2012).

    Article  Google Scholar 

  75. Dkhil, S. B. et al. Square-centimeter-sized high-efficiency polymer solar cells: how the processing atmosphere and film quality influence performance at large scale. Adv. Energy Mater. 6, 1600290 (2016).

    Article  Google Scholar 

  76. Manor, A., Katz, E. A., Tromholt, T., Hirsch, B. & Krebs, F. C. Origin of size effect on efficiency of organic photovoltaics. J. Appl. Phys. 109, 074508 (2011).

    Article  Google Scholar 

  77. Peters, C. H. et al. High efficiency polymer solar cells with long operating lifetimes. Adv. Energy Mater. 1, 491–494 (2011).

    Article  Google Scholar 

  78. Li, N. et al. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nat. Commun. 8, 14541 (2017).

    Article  Google Scholar 

  79. Mateker, W. R. & McGehee, M. D. Progress in understanding degradation mechanisms and improving stability in organic photovoltaics. Adv. Mater. 29, 1603940 (2017).

    Article  Google Scholar 

  80. Gasparini, N. et al. Burn-in free nonfullerene-based organic solar cells. Adv. Energy Mater. 7, 1700770 (2017). This paper, along with ref. 81, reports efficient non-fullerene organic solar cells with small burn-in losses of efficiencies compared with the benchmark fullerene-based devices.

    Article  Google Scholar 

  81. Cha, H. et al. An efficient, ‘burn in’ free organic solar cell employing a nonfullerene electron acceptor. Adv. Mater. 29, 1701156 (2017).

    Article  Google Scholar 

  82. Baran, D. et al. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369 (2017). This paper shows the use of the ternary strategy to simultaneously improve the efficiencies and stability of non-fullerene organic solar cells.

    Article  Google Scholar 

  83. Wadsworth, A. et al. Highly efficient and reproducible nonfullerene solar cells from hydrocarbon solvents. ACS Energy Lett. 2, 1494–1500 (2017).

    Article  Google Scholar 

  84. Duan, C. H., Huang, F. & Cao, Y. Solution processed thick film organic solar cells. Polym. Chem. 6, 8081–8098 (2015).

    Article  Google Scholar 

  85. Wurfel, U., Neher, D., Spies, A. & Albrecht, S. Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells. Nat. Commun. 6, 6951 (2015). This paper, along with ref. 86, demonstrates the effect of charge mobility and charge recombination rate on the device fill factors of organic solar cells.

    Article  Google Scholar 

  86. Bartelt, J. A., Lam, D., Burke, T. M., Sweetnam, S. M. & McGehee, M. D. Charge-carrier mobility requirements for bulk heterojunction solar cells with high fill factor and external quantum efficiency 90%. Adv. Energy Mater. 5, 1500577 (2015).

    Article  Google Scholar 

  87. Yao, H. et al. Achieving highly efficient nonfullerene organic solar cells with improved intermolecular interaction and open-circuit voltage. Adv. Mater. 29, 1700254 (2017).

    Article  Google Scholar 

  88. Gasparini, N. et al. Polymer:nonfullerene bulk heterojunction solar cells with exceptionally low recombination rates. Adv. Energy Mater. 7, 1701561 (2017).

    Article  Google Scholar 

  89. Cui, Y. et al. Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J. Am. Chem. Soc. 139, 7302–7309 (2017). Two non-fullerene photovoltaic blends were fine-tuned to construct double-junction tandem cells, which provided a promising route to commercialization of organic solar cells with high efficiencies.

    Article  Google Scholar 

  90. Qin, Y. et al. Achieving 12.8% efficiency by simultaneously improving open-circuit voltage and short-circuit current density in tandem organic solar cells. Adv. Mater. 29, 1606340 (2017).

    Article  Google Scholar 

  91. Sun, C. et al. Interface design for high-efficiency non-fullerene polymer solar cells. Energy Environ. Sci. 10, 1784–1791 (2017).

    Article  Google Scholar 

  92. Yu, J. et al. Boosting performance of inverted organic solar cells by using a planar coronene based electron-transporting layer. Nano Energy 39, 454–460 (2017).

    Article  Google Scholar 

  93. Zhao, W., Li, S., Zhang, S., Liu, X. & Hou, J. Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Adv. Mater. 29, 1604059 (2017).

    Article  Google Scholar 

  94. Lu, L. Y., Kelly, M. A., You, W. & Yu, L. P. Status and prospects for ternary organic photovoltaics. Nat. Photon. 9, 491–500 (2015).

    Article  Google Scholar 

  95. Gasparini, N. et al. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%. Nat. Energy 1, 16118 (2016).

    Article  Google Scholar 

  96. You, J. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013).

    Article  Google Scholar 

  97. Li, M. M. et al. Solution-processed organic tandem solar cells with power conversion efficiencies 12%. Nat. Photon. 11, 85–90 (2017).

    Article  Google Scholar 

  98. Li, N. et al. Environmentally Printing efficient organic tandem solar cells with high fill factors: a guideline towards 20% power conversion efficiency. Adv. Energy Mater. 4, 1400084 (2014).

    Article  Google Scholar 

  99. Guo, F., Ameri, T., Forberich, K. & Brabec, C. J. Semitransparent polymer solar cells. Polym. Int. 62, 1408–1412 (2013).

    Article  Google Scholar 

  100. Wang, W. et al. Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency. Adv. Mater. 29, 1701308 (2017). This paper reports semi-transparent organic solar cells approaching 10% efficiency based on a low-bandgap small molecular acceptor with strong near-infrared absorption.

    Article  Google Scholar 

Download references

Acknowledgements

H.Y. and J.Z. acknowledge financial support from the National Basic Research Program of China (973 Program; 2013CB834705), the Hong Kong Research Grants Council (T23–407/13-N, N_HKUST623/13, and 606012), the National Science Foundation of China (#21374090) and the Hong Kong Innovation and Technology Commission (ITC-CNERC14SC01). A.F. acknowledges the US National Science Foundation Materials Research Science and Engineering Centers program through the Northwestern University Materials Research Center (grant DMR-1121262) and US Air Force Office of Scientific Research (Grant FA9550-15-1-0044) for financial support. X.G. acknowledges financial support from National Science Foundation of China (51573076), Shenzhen Peacock Plan project (KQTD20140630110339343) and South University of Science and Technology of China (FRG-SUSTC1501A-72).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xugang Guo, Antonio Facchetti or He Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Tan, H.S., Guo, X. et al. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat Energy 3, 720–731 (2018). https://doi.org/10.1038/s41560-018-0181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0181-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing