Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping


Lithium cobalt oxides (LiCoO2) possess a high theoretical specific capacity of 274 mAh g–1. However, cycling LiCoO2-based batteries to voltages greater than 4.35 V versus Li/Li+ causes significant structural instability and severe capacity fade. Consequently, commercial LiCoO2 exhibits a maximum capacity of only ~165 mAh g–1. Here, we develop a doping technique to tackle this long-standing issue of instability and thus increase the capacity of LiCoO2. La and Al are concurrently doped into Co-containing precursors, followed by high-temperature calcination with lithium carbonate. The dopants are found to reside in the crystal lattice of LiCoO2, where La works as a pillar to increase the c axis distance and Al as a positively charged centre, facilitating Li+ diffusion, stabilizing the structure and suppressing the phase transition during cycling, even at a high cut-off voltage of 4.5 V. This doped LiCoO2 displays an exceptionally high capacity of 190 mAh g–1, cyclability with 96% capacity retention over 50 cycles and significantly enhanced rate capability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Ex situ characterization of D-LCO and P-LCO.
Fig. 2: Electrochemical characterization of P-LCO and D-LCO.
Fig. 3: In situ synchrotron HEXRD characterization for D-LCO during the first charge–discharge process.
Fig. 4: Li ion diffusion coefficient determination of P-LCO and D-LCO via GITT.
Fig. 5: ASI data of P-LCO and D-LCO determined via HPPC.
Fig. 6: SEM characterization of P-LCO and D-LCO particles after the cycling test.


  1. 1.

    Sun, Y. et al. High-capacity battery cathode prelithiation to offset initial lithium loss. Nat. Energy 1, 15008 (2016).

    Article  Google Scholar 

  2. 2.

    Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    Article  Google Scholar 

  3. 3.

    Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  4. 4.

    Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

    Article  Google Scholar 

  5. 5.

    Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).

    Article  Google Scholar 

  6. 6.

    Kim, J. & Manthiram, A. A manganese oxyiodide cathode for rechargeable lithium batteries. Nature 390, 265–267 (1997).

    Article  Google Scholar 

  7. 7.

    Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

    Article  Google Scholar 

  8. 8.

    Zheng, F. et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew. Chem. Int. Ed. 54, 13058–13062 (2015).

    Article  Google Scholar 

  9. 9.

    Qiu, B. et al. Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016).

    Article  Google Scholar 

  10. 10.

    Amatucci, G. G., Tarascon, J. M. & Klein, L. C. CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996).

    Article  Google Scholar 

  11. 11.

    Van der Ven, A., Aydinol, M. K., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58, 2975–2987 (1998).

    Article  Google Scholar 

  12. 12.

    Mizushima, K., Jones, P., Wiseman, P. & Goodenough, J. B. LixCoO2 (0<x<–1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article  Google Scholar 

  13. 13.

    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    Article  Google Scholar 

  14. 14.

    Shim, J. H., Lee, S. & Park, S. S. Effects of MgO coating on the structural and electrochemical characteristics of LiCoO2 as cathode materials for lithium ion battery. Chem. Mater. 26, 2537–2543 (2014).

    Article  Google Scholar 

  15. 15.

    Kannan, A. M., Rabenberg, L. & Manthiram, A. High capacity surface-modified LiCoO2 cathodes for lithium-ion batteries. Electrochem. Solid-State Lett. 6, A16–A18 (2003).

    Article  Google Scholar 

  16. 16.

    Chen, Z. & Dahn, J. R. Improving the capacity retention of LiCoO2 cycled to 4.5V by heat-treatment. Electrochem. Solid-State Lett. 7, A11–A14 (2004).

    Article  Google Scholar 

  17. 17.

    Shim, J.-H., Lee, J., Han, S. Y. & Lee, S. Synergistic effects of coating and doping for lithium ion battery cathode materials: synthesis and characterization of lithium titanate-coated LiCoO2 with Mg doping. Electrochim. Acta 186, 201–208 (2015).

    Article  Google Scholar 

  18. 18.

    Levasseur, S., Ménétrier, M. & Delmas, C. On the LixCo1−yMgyO2 system upon deintercalation: electrochemical, electronic properties and 7Li MAS NMR studies. J. Power Sources 112, 419–427 (2002).

    Article  Google Scholar 

  19. 19.

    Nobili, F. et al. Sol–gel synthesis and electrochemical characterization of Mg-/Zr-doped LiCoO2 cathodes for Li-ion batteries. J. Power Sources 197, 276–284 (2012).

    Article  Google Scholar 

  20. 20.

    Kim, H.-S., Ko, T.-K., Na, B.-K., Cho, W. I. & Chao, B. W. Electrochemical properties of LiMxCo1−xO2 [M = Mg, Zr] prepared by sol–gel process. J. Power Sources 138, 232–239 (2004).

    Article  Google Scholar 

  21. 21.

    Jang, Y.-I. et al. Synthesis and characterization of LiAlyCo1−yO2 and LiAlyNi1−yO2. J. Power Sources 81–82, 589–593 (1999).

    Article  Google Scholar 

  22. 22.

    Ceder, G. et al. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392, 694–696 (1998).

    Article  Google Scholar 

  23. 23.

    Adipranoto, D. S. et al. Neutron diffraction studies on structural effect for Ni-doping in LiCo1−xNixO2. Solid State Ion. 262, 92–97 (2014).

    Article  Google Scholar 

  24. 24.

    Alcántara, R. et al. X-ray diffraction, 57Fe Mössbauer and step potential electrochemical spectroscopy study of LiFeyCo1−yO2 compounds. J. Power Sources 81–82, 547–553 (1999).

    Article  Google Scholar 

  25. 25.

    Madhavi, S., Subba Rao, G. V., Chowdari, B. V. R. & Li, S. F. Y. Effect of Cr dopant on the cathodic behavior of LiCoO2. Electrochim. Acta 48, 219–226 (2002).

    Article  Google Scholar 

  26. 26.

    Stoyanova, R., Zhecheva, E. & Zarkova, L. Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1−yO2 solid solutions. Solid State Ion. 73, 233–240 (1994).

    Article  Google Scholar 

  27. 27.

    Gopukumar, S., Jeong, Y. & Kim, K. B. Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ion. 159, 223–232 (2003).

    Article  Google Scholar 

  28. 28.

    Sun, Y. K., Han, J. M., Myung, S. T., Lee, S. W. & Amine, K. Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochem. Commun. 8, 821–826 (2006).

    Article  Google Scholar 

  29. 29.

    Markevich, E., Salitra, G. & Aurbach, D. Influence of the PVdF binder on the stability of LiCoO2 electrodes. Electrochem. Commun. 7, 1298–1304 (2005).

    Article  Google Scholar 

  30. 30.

    Reimers, J. N. & Dahn, J. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091–2097 (1992).

    Article  Google Scholar 

  31. 31.

    Chen, Z., Lu, Z. & Dahn, J. R. Staging phase transitions in LixCoO2. J. Electrochem. Soc. 149, A1604–A1609 (2002).

    Article  Google Scholar 

  32. 32.

    Wolverton, C. & Zunger, A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys. Rev. Lett. 81, 606 (1998).

    Article  Google Scholar 

  33. 33.

    Xia, H., Lu, L., Meng, S. Y. & Ceder, G. Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J. Electrochem. Soc. 154, A337–A342 (2007).

    Article  Google Scholar 

  34. 34.

    Malik, R., Zhou, F. & Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 10, 587–590 (2011).

    Article  Google Scholar 

  35. 35.

    Yin, R.-Z. et al. In situ XRD investigation and thermal properties of Mg doped LiCoO2 for lithium ion batteries. J. Electrochem. Soc. 159, A253–A258 (2012).

    Article  Google Scholar 

  36. 36.

    Amatucci, G. G., Tarascon, J. M. & Klein, L. C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ion. 83, 167–173 (1996).

    Article  Google Scholar 

Download references


We gratefully acknowledge the support from the US Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Use of the Advanced Photon Source and the Centre for Nanoscale Materials, Office of Science user facilities operated for DOE, Office of Science by Argonne National Laboratory, was supported by the US DOE under contract no. DE-AC02-06CH11357. The authors acknowledge H. Zhou, X. Zhang, Y. Liu, C.-J. Sun and S. Lapidus for help and discussion with the synchrotron experiments and STEM data. We thank M.-L. Saboungi and D. Price for critical reading of the manuscript.

Author information




Y.L. and W.L. conceived the idea. Q.L., X.S. and D.L. designed and performed the experiments. X.S., Q.L. and Y.Q. performed the electrochemical characterization. Q.L., X.S., Y.Ro., F.G., R.K., X.X. and Y.Re. carried out the in situ and ex situ synchrotron measurements. Q.L., Y.Ro. and Y.Re. analysed and interpreted the synchrotron XRD data. D.L. and X.S. performed the SEM work. J.W., D.L. and Y.W. acquired the STEM and HAADF images. F.A. and J.B. contributed to discussions and interpretation of the electrochemical data. Q.L., D.L., X.S., Y.Re., W.L. and Y.L. wrote the paper. The project was supervised by Y.L., W.L. and Y.Re. All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Xin Su, Yang Ren or Yangxing Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Supplementary Tables

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Su, X., Lei, D. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat Energy 3, 936–943 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing