Article | Published:

Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping


Lithium cobalt oxides (LiCoO2) possess a high theoretical specific capacity of 274 mAh g–1. However, cycling LiCoO2-based batteries to voltages greater than 4.35 V versus Li/Li+ causes significant structural instability and severe capacity fade. Consequently, commercial LiCoO2 exhibits a maximum capacity of only ~165 mAh g–1. Here, we develop a doping technique to tackle this long-standing issue of instability and thus increase the capacity of LiCoO2. La and Al are concurrently doped into Co-containing precursors, followed by high-temperature calcination with lithium carbonate. The dopants are found to reside in the crystal lattice of LiCoO2, where La works as a pillar to increase the c axis distance and Al as a positively charged centre, facilitating Li+ diffusion, stabilizing the structure and suppressing the phase transition during cycling, even at a high cut-off voltage of 4.5 V. This doped LiCoO2 displays an exceptionally high capacity of 190 mAh g–1, cyclability with 96% capacity retention over 50 cycles and significantly enhanced rate capability.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Sun, Y. et al. High-capacity battery cathode prelithiation to offset initial lithium loss. Nat. Energy 1, 15008 (2016).

  2. 2.

    Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

  3. 3.

    Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

  4. 4.

    Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

  5. 5.

    Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).

  6. 6.

    Kim, J. & Manthiram, A. A manganese oxyiodide cathode for rechargeable lithium batteries. Nature 390, 265–267 (1997).

  7. 7.

    Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

  8. 8.

    Zheng, F. et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew. Chem. Int. Ed. 54, 13058–13062 (2015).

  9. 9.

    Qiu, B. et al. Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016).

  10. 10.

    Amatucci, G. G., Tarascon, J. M. & Klein, L. C. CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996).

  11. 11.

    Van der Ven, A., Aydinol, M. K., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58, 2975–2987 (1998).

  12. 12.

    Mizushima, K., Jones, P., Wiseman, P. & Goodenough, J. B. LixCoO2 (0<x<–1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

  13. 13.

    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

  14. 14.

    Shim, J. H., Lee, S. & Park, S. S. Effects of MgO coating on the structural and electrochemical characteristics of LiCoO2 as cathode materials for lithium ion battery. Chem. Mater. 26, 2537–2543 (2014).

  15. 15.

    Kannan, A. M., Rabenberg, L. & Manthiram, A. High capacity surface-modified LiCoO2 cathodes for lithium-ion batteries. Electrochem. Solid-State Lett. 6, A16–A18 (2003).

  16. 16.

    Chen, Z. & Dahn, J. R. Improving the capacity retention of LiCoO2 cycled to 4.5V by heat-treatment. Electrochem. Solid-State Lett. 7, A11–A14 (2004).

  17. 17.

    Shim, J.-H., Lee, J., Han, S. Y. & Lee, S. Synergistic effects of coating and doping for lithium ion battery cathode materials: synthesis and characterization of lithium titanate-coated LiCoO2 with Mg doping. Electrochim. Acta 186, 201–208 (2015).

  18. 18.

    Levasseur, S., Ménétrier, M. & Delmas, C. On the LixCo1−yMgyO2 system upon deintercalation: electrochemical, electronic properties and 7Li MAS NMR studies. J. Power Sources 112, 419–427 (2002).

  19. 19.

    Nobili, F. et al. Sol–gel synthesis and electrochemical characterization of Mg-/Zr-doped LiCoO2 cathodes for Li-ion batteries. J. Power Sources 197, 276–284 (2012).

  20. 20.

    Kim, H.-S., Ko, T.-K., Na, B.-K., Cho, W. I. & Chao, B. W. Electrochemical properties of LiMxCo1−xO2 [M = Mg, Zr] prepared by sol–gel process. J. Power Sources 138, 232–239 (2004).

  21. 21.

    Jang, Y.-I. et al. Synthesis and characterization of LiAlyCo1−yO2 and LiAlyNi1−yO2. J. Power Sources 81–82, 589–593 (1999).

  22. 22.

    Ceder, G. et al. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392, 694–696 (1998).

  23. 23.

    Adipranoto, D. S. et al. Neutron diffraction studies on structural effect for Ni-doping in LiCo1−xNixO2. Solid State Ion. 262, 92–97 (2014).

  24. 24.

    Alcántara, R. et al. X-ray diffraction, 57Fe Mössbauer and step potential electrochemical spectroscopy study of LiFeyCo1−yO2 compounds. J. Power Sources 81–82, 547–553 (1999).

  25. 25.

    Madhavi, S., Subba Rao, G. V., Chowdari, B. V. R. & Li, S. F. Y. Effect of Cr dopant on the cathodic behavior of LiCoO2. Electrochim. Acta 48, 219–226 (2002).

  26. 26.

    Stoyanova, R., Zhecheva, E. & Zarkova, L. Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1−yO2 solid solutions. Solid State Ion. 73, 233–240 (1994).

  27. 27.

    Gopukumar, S., Jeong, Y. & Kim, K. B. Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ion. 159, 223–232 (2003).

  28. 28.

    Sun, Y. K., Han, J. M., Myung, S. T., Lee, S. W. & Amine, K. Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochem. Commun. 8, 821–826 (2006).

  29. 29.

    Markevich, E., Salitra, G. & Aurbach, D. Influence of the PVdF binder on the stability of LiCoO2 electrodes. Electrochem. Commun. 7, 1298–1304 (2005).

  30. 30.

    Reimers, J. N. & Dahn, J. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091–2097 (1992).

  31. 31.

    Chen, Z., Lu, Z. & Dahn, J. R. Staging phase transitions in LixCoO2. J. Electrochem. Soc. 149, A1604–A1609 (2002).

  32. 32.

    Wolverton, C. & Zunger, A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys. Rev. Lett. 81, 606 (1998).

  33. 33.

    Xia, H., Lu, L., Meng, S. Y. & Ceder, G. Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J. Electrochem. Soc. 154, A337–A342 (2007).

  34. 34.

    Malik, R., Zhou, F. & Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 10, 587–590 (2011).

  35. 35.

    Yin, R.-Z. et al. In situ XRD investigation and thermal properties of Mg doped LiCoO2 for lithium ion batteries. J. Electrochem. Soc. 159, A253–A258 (2012).

  36. 36.

    Amatucci, G. G., Tarascon, J. M. & Klein, L. C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ion. 83, 167–173 (1996).

Download references


We gratefully acknowledge the support from the US Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Use of the Advanced Photon Source and the Centre for Nanoscale Materials, Office of Science user facilities operated for DOE, Office of Science by Argonne National Laboratory, was supported by the US DOE under contract no. DE-AC02-06CH11357. The authors acknowledge H. Zhou, X. Zhang, Y. Liu, C.-J. Sun and S. Lapidus for help and discussion with the synchrotron experiments and STEM data. We thank M.-L. Saboungi and D. Price for critical reading of the manuscript.

Author information

Y.L. and W.L. conceived the idea. Q.L., X.S. and D.L. designed and performed the experiments. X.S., Q.L. and Y.Q. performed the electrochemical characterization. Q.L., X.S., Y.Ro., F.G., R.K., X.X. and Y.Re. carried out the in situ and ex situ synchrotron measurements. Q.L., Y.Ro. and Y.Re. analysed and interpreted the synchrotron XRD data. D.L. and X.S. performed the SEM work. J.W., D.L. and Y.W. acquired the STEM and HAADF images. F.A. and J.B. contributed to discussions and interpretation of the electrochemical data. Q.L., D.L., X.S., Y.Re., W.L. and Y.L. wrote the paper. The project was supervised by Y.L., W.L. and Y.Re. All authors discussed the results and reviewed the manuscript.

Correspondence to Xin Su or Yang Ren or Yangxing Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Supplementary Tables

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Ex situ characterization of D-LCO and P-LCO.
Fig. 2: Electrochemical characterization of P-LCO and D-LCO.
Fig. 3: In situ synchrotron HEXRD characterization for D-LCO during the first charge–discharge process.
Fig. 4: Li ion diffusion coefficient determination of P-LCO and D-LCO via GITT.
Fig. 5: ASI data of P-LCO and D-LCO determined via HPPC.
Fig. 6: SEM characterization of P-LCO and D-LCO particles after the cycling test.