Low-carbon investments are necessary for driving the energy system transformation that is called for by both the Paris Agreement and Sustainable Development Goals. Improving understanding of the scale and nature of these investments under diverging technology and policy futures is therefore of great importance to decision makers. Here, using six global modelling frameworks, we show that the pronounced reallocation of the investment portfolio required to transform the energy system will not be initiated by the current suite of countries’ Nationally Determined Contributions. Charting a course toward ‘well below 2 °C’ instead sees low-carbon investments overtaking fossil investments globally by around 2025 or before and growing thereafter. Pursuing the 1.5 °C target demands a marked upscaling in low-carbon capital beyond that of a 2 °C-consistent future. Actions consistent with an energy transformation would increase the costs of achieving the goals of energy access and food security, but reduce the costs of achieving air-quality goals.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • Correction 02 July 2018

    In the version of ‘Supplementary Data 1’ originally published with this Article, the units for the ‘Capacity|Electricity|*’ variables in the ‘Non_Investment_Annual’ tab were incorrectly given as EJ/yr; they should have read GW. This has now been corrected. Also, some of the variables listed in the ‘Non_Investment_Variable_Defs’ were not required and have therefore been removed.


  1. 1.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).

  2. 2.

    Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim. Change 123, 353–367 (2014).

  3. 3.

    Riahi, K. in Global Energy Assessment: Toward a Sustainable Future (eds Johansson, T. B. et al.) 1203–1306 (Cambridge Univ. Press, Cambridge, 2012).

  4. 4.

    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

  5. 5.

    Carraro, C., Favero, A., & Masetti, E. Investments and public finance in a green, low carbon, economy. Energy Econ. 34, S15–S28 (2012).

  6. 6.

    Perspectives for the Energy Transition—Investment Needs for a Low-Carbon Energy System (OECD/IEA & IRENA, 2017).

  7. 7.

    McCollum, D. L. et al. Energy investments under climate policy: a comparison of global models. Clim. Change Econ. 04, 1340010 (2013).

  8. 8.

    Annex to G20 Leaders Declaration: G20 Hamburg Climate and Energy Action Plan for Growth (G20, 2017).

  9. 9.

    Paris Agreement Decision 1/CP.17 (UNFCCC, 2015).

  10. 10.

    Transforming Our World: The 2030 Agenda for Sustainable Development (A/RES/70/1) (UN, 2015).

  11. 11.

    Fujimori, S., Hasegawa, T., Masui, T. & Takahashi, K. Land use representation in a global CGE model for long-term simulation: CET vs. logit functions. Food Secur. 6, 685–699 (2014).

  12. 12.

    Fujimori, S., Masui, T. & Matsuoka, Y. AIM/CGE [basic] Manual Discussion Paper Series (Center for Social and Environmental Systems Research, National Institute for Environmental Studies, 2012).

  13. 13.

    Stehfest, E. et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0. Model Description and Policy Applications. (PBL Netherlands Environmental Assessment Agency, 2014).

  14. 14.

    Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

  15. 15.

    Krey, V. et al. MESSAGE-GLOBIOM 1.0 Documentation (IIASA, 2016).

  16. 16.

    Criqui, P., Mima, S., Menanteau, P. & Kitous, A. Mitigation strategies and energy technology learning: an assessment with the POLES model. Technol. Forecast. Social Change 90, 119–136 (2015).

  17. 17.

    Keramidas, K., Kitous, A. G., Després, J. & Schmitz, A. POLES-JRC Model Documentation. EUR 28728 EN. Report JRC107387 (Joint Research Center, 2017).

  18. 18.

    Kriegler, E. et al. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob. Environ. Change 42, 297–315 (2017).

  19. 19.

    Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013).

  20. 20.

    Bosetti, V., Carraro, C., Galeotti, M., Massetti, E. & Tavoni, M. WITCH: a World Induced Technical Change Hybrid model. Energy J. 27, 13–37 (2006).

  21. 21.

    Emmerling, J. et al. The WITCH 2016 Model—Documentation and Implementation of the Shared Socioeconomic Pathways (Fondazione Eni Enrico Mattei, 2016).

  22. 22.

    Iyer, G. et al. Measuring progress from nationally determined contributions to mid-century strategies. Nat. Clim. Change (in the press).

  23. 23.

    GCAM Documentation http://jgcri.github.io/gcam-doc/toc.html (PNNL, 2016).

  24. 24.

    Cameron, C. et al. Policy trade-offs between climate mitigation and clean cook-stove access in South Asia. Nat. Energy 1, e15010 (2016).

  25. 25.

    Amann, M. et al. Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environ. Model. Softw. 26, 1489–1501 (2011).

  26. 26.

    Abel, G. J., Barakat, B., KC, S. & Lutz, W. Meeting the Sustainable Development Goals leads to lower world population growth. Proc. Natl Acad. Sci. 113, 14294–14299 (2016).

  27. 27.

    Parkinson, S. et al. Balancing clean water-climate change mitigation trade-offs. IIASA Working Paper WP-18-005 (IIASA, 2018).

  28. 28.

    Parkinson, S. C. et al. Climate and human development impacts on municipal water demand: a spatially-explicit global modeling framework. Environ. Model. Softw. 85, 266–278 (2016).

  29. 29.

    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

  30. 30.

    World Energy Investment 2016 (OECD/IEA, 2016).

  31. 31.

    World Energy Investment 2017 (OECD/IEA, 2017).

  32. 32.

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

  33. 33.

    The Emissions Gap Report 2016 (UNEP, 2016).

  34. 34.

    ADVANCE contributors. ADVANCE wiki: The Common Integrated Assessment Model (CIAM) Documentation Website (CIAM, 2017); http://themasites.pbl.nl/models/advance/index.php/ADVANCE_wiki

  35. 35.

    Grubler, A. et al. in Global Energy Assessment: Toward a Sustainable Future (eds Johansson, T. B. et al.) 1665–1744 (Cambridge Univ. Press, Cambridge, 2012).

  36. 36.

    Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

  37. 37.

    World Bank Statistical Database (World Bank, 2018); https://data.worldbank.org/indicator/NY.GDP.DEFL.ZS.AD?locations=US

Download references


We acknowledge funding by the World Bank and the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 642147 (‘CD-LINKS’ project). S.F. is supported by the Environment Research and Technology Development Fund (2-1702) of the Environmental Restoration and Conservation Agency Japan and JSPS KAKENHI grant number JP16K18177. P. Kolp of IIASA is also recognized for his assistance with Web database development and support. The views expressed by J.D. and A.S. are purely theirs and may not in any circumstances be regarded as stating an official position of the European Commission.

Author information


  1. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

    • David L. McCollum
    • , Wenji Zhou
    • , Sebastian Busch
    • , Oliver Fricko
    • , Shinichiro Fujimori
    • , Matthew Gidden
    • , Daniel Huppmann
    • , Volker Krey
    • , Shonali Pachauri
    • , Simon Parkinson
    • , Miguel Poblete-Cazenave
    • , Peter Rafaj
    • , Narasimha Rao
    • , Wolfgang Schoepp
    •  & Keywan Riahi
  2. University of Tennessee, Knoxville, TN, USA

    • David L. McCollum
  3. Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany

    • Christoph Bertram
    •  & Elmar Kriegler
  4. PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands

    • Harmen-Sytze de Boer
    • , Mathijs Harmsen
    •  & Detlef van Vuuren
  5. EuroMediterranean Center on Climate Change (CMCC), Milan, Italy

    • Valentina Bosetti
    • , Laurent Drouet
    •  & Johannes Emmerling
  6. Bocconi University, Milan, Italy

    • Valentina Bosetti
  7. Joint Research Centre (JRC), European Commission , Seville, Spain

    • Jacques Després
    •  & Andreas Schmitz
  8. The World Bank, Washington, DC, USA

    • Marianne Fay
    • , Claire Nicolas
    •  & Julie Rozenberg
  9. National Institute for Environmental Studies (NIES), Ibaraki, Japan

    • Shinichiro Fujimori
  10. Copernicus Institute for Sustainable Development, Utrecht University, Utrecht, The Netherlands

    • Mathijs Harmsen
    •  & Detlef van Vuuren
  11. Pacific Northwest National Laboratory (PNNL), College Park, MD, USA

    • Gokul Iyer
  12. University of Victoria, Victoria, British Columbia, Canada

    • Simon Parkinson
  13. Colorado School of Mines, Golden, CO, USA

    • Keywan Riahi


  1. Search for David L. McCollum in:

  2. Search for Wenji Zhou in:

  3. Search for Christoph Bertram in:

  4. Search for Harmen-Sytze de Boer in:

  5. Search for Valentina Bosetti in:

  6. Search for Sebastian Busch in:

  7. Search for Jacques Després in:

  8. Search for Laurent Drouet in:

  9. Search for Johannes Emmerling in:

  10. Search for Marianne Fay in:

  11. Search for Oliver Fricko in:

  12. Search for Shinichiro Fujimori in:

  13. Search for Matthew Gidden in:

  14. Search for Mathijs Harmsen in:

  15. Search for Daniel Huppmann in:

  16. Search for Gokul Iyer in:

  17. Search for Volker Krey in:

  18. Search for Elmar Kriegler in:

  19. Search for Claire Nicolas in:

  20. Search for Shonali Pachauri in:

  21. Search for Simon Parkinson in:

  22. Search for Miguel Poblete-Cazenave in:

  23. Search for Peter Rafaj in:

  24. Search for Narasimha Rao in:

  25. Search for Julie Rozenberg in:

  26. Search for Andreas Schmitz in:

  27. Search for Wolfgang Schoepp in:

  28. Search for Detlef van Vuuren in:

  29. Search for Keywan Riahi in:


D.L.M., K.R., J.R., M.F. and C.N. posed the initial research questions to frame the study and then selected the scenarios to analyse. V.K., M.G., O.F., D.H., S.F., M.H., D.v.V., H.-S.d.B., C.B., E.K., J.E., L.D., V.B., J.D., A.S. and G.I. ran the integrated assessment models for obtaining the energy investments. V.K., Si.P., Sh.P., M.P.-C., N.R., P.R., W.S. and S.F. carried out the investment analyses for the other SDGs. W.Z. and D.L.M. compiled and analysed results from all models and analyses. D.L.M. and W.Z. led the writing of the manuscript, with all other authors contributing.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to David L. McCollum.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1–2, Supplementary Figures 1–9, Supplementary Notes 1–7, Supplementary Methods, Supplementary References

  2. Supplementary Data 1

    Data underlying paper

  3. Supplementary Data 2

    Scenario modelling protocol

  4. Supplementary Data 3

    Policy details of scenarios

About this article

Publication history