Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up

Subjects

Abstract

Cu(In,Ga)(S,Se)2 (CIGS) solar cells show record efficiencies comparable to those of crystalline Si-based technologies. Their industrial module production costs are also comparable to those of Si photovoltaics in spite of their much lower production volume. However, the competitiveness of CIGS is compromised by the difference in performance between cell and module scales, known as the cell-to-module efficiency gap, which is significantly higher than in competing industrial photovoltaic technologies. In this Review, we quantify the main cell-to-module efficiency loss mechanisms and discuss the various strategies explored in academia and industry to reduce the efficiency gap: new transparent conductive oxides, hybrid modularization approaches and the use of wide-bandgap solar absorbers in the 1.4–1.5 eV range. To implement these strategies, research gaps relating to various device layers need to be filled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell and module efficiencies for the main industrial PV technologies.
Fig. 2: Modularization routes and origin of power losses at the cell and module scales.
Fig. 3: PV interconnections for a hybrid approach.
Fig. 4: Calculated module efficiencies for absorbers with various bandgaps.

Similar content being viewed by others

References

  1. Whitepaper for CIGS Thin Film Solar Cell Technology (CIGS, 2015).

  2. 2Q 2017 Global Market Outlook. Under pressure (Bloomberg New Energy Finance, 2017).

  3. Global Market Outlook. For Solar Power 2017-2021 (Solar Power Europe, 2016).

  4. 17.52% efficiency-new world record for Solibro’s CIGS thin film panels Solibro http://solibro-solar.com/en/news-downloads/news/ (2018).

  5. Green, M. A. et al. Solar cell efficiency tables (version 51). Prog. Photovolt. 26, 3–12 (2018).

    Article  Google Scholar 

  6. Solar Frontier achieves world record thin-film solar cell efficiency of 22.9% Solar Frontier http://www.solar-frontier.com/eng/news/2017/1220_press.html (2017).

  7. Ward, J. S. et al. Cu(In,Ga)Se2 solar cells measured under low flux optical concentration. In 40th Photovoltaic Specialists Conference 2934–2937 (IEEE, 2014); https://ieeexplore.ieee.org/document/6925546/

  8. Jackson, P. et al. Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi RRL 10, 583–586 (2016).

    Article  Google Scholar 

  9. Chirila, A. et al. Potassium induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nat. Mater. 12, 1107–1111 (2013).

    Article  Google Scholar 

  10. Solibro GmbH company presentation Solibro http://solibro-solar.com/fileadmin/_migrated/content_uploads/Solibro_GmbH_company_presentation_2016-06_Rev06_EN.pdf (2016).

  11. Shockely, W. & Last, J. T. Statistics of the charge distribution for a localized flaw in a semiconductor. Phys. Rev. 107, 392–396 (1957).

    Article  MATH  Google Scholar 

  12. Kurtz, S. et al. A framework for a comparative accelerated testing standard. In 39th Photovoltaic Specialists Conference 0132–0138 (IEEE, 2013); https://ieeexplore.ieee.org/document/6744114/

  13. New world record efficiency for a CIGS PV module from Solibro Solibro http://solibro-solar.com/en/news-downloads/news/ (2017).

  14. Richards, M. Hanergy breaks another solar efficiency world record for CIGS modules MiaSolé http://miasole.com/hanergy-breaks-another-solar-efficiency-world-record-cigs-modules/ (2018).

  15. Colville, F. PERC solar cell production to exceed 15GW in 2017 PVTech https://www.pv-tech.org/editors-blog/perc-solar-cell-production-to-exceed-15gw-in-2017 (2016)

  16. Gabor, A. Cell-to-module gains and losses in crystalline silicon PV Intersolar http://docplayer.net/12886264-Cell-to-module-gains-and-losses-in-crystalline-silicon-pv-andrew-gabor-gabor-photovoltaics-consulting-llc-july-10-2013-intersolar-na.html (2013).

  17. Matsunaga, K., Komaro, T., Nakayama, Y., Kume, T. & Suzuki, Y. Mass-production technology for CIGS modules. Sol. Energy Mater. Sol. Cells 93, 1134–1138 (2009).

    Article  Google Scholar 

  18. Powalla, M. et al. Large-area CIGS modules: processes and properties. Thin Solid Films 523–533, 431–432 (2003).

    Google Scholar 

  19. Lin, J. V. et al. A recombination analysis of Cu(In,Ga)Se2 solar cells with low and high Ga compositions. Sol. Energy Mater. Sol. Cells 124, 143–149 (2014).

    Article  Google Scholar 

  20. Kushiya, K. Key near-term R&D issues for continuous improvement in CIS-based thin-film PV modules. Sol. Energy Mater. Sol. Cells 93, 1037–1041 (2009).

    Article  Google Scholar 

  21. Lee, D. et al. Effects of the Cu/(Ga+In) ratio on the bulk and interface properties of Cu(In,Ga)(S,Se)2 solar cells. Solar Energy Mater. Solar Cells 149, 195–203 (2016). This paper highlights the importance of the Cu/Ga+In (CGI) ratio within the loss performance factors of Cu(In,Ga)(S,Se) 2 . Lower CGI ratios are related with reduced interface recombination.

    Article  Google Scholar 

  22. Oliva, F. et al. Optical methodology for process monitoring of chalcopyrite photovoltaic technologies: Application to low cost Cu(In, Ga)(S, Se)2 electrodeposition based processes. Sol. Energy Mater. Sol. Cells 158, 168–183 (2016).

    Article  Google Scholar 

  23. Kijima, S. & Nakada, T. High-temperature degradation mechanism of Cu(In, Ga)Se2-based thin film solar cells. Appl. Phys. Express 1, 075002 (2008).

    Article  Google Scholar 

  24. Jeng, M.-J. et al. Improving efficiency of multicrystalline silicon and CIGS solar cells by incorporating metal nanoparticles. Materials (Basel) 8, 6761–6771 (2015).

    Article  Google Scholar 

  25. Reinhold, B. et al. Monolithically interconnected lamellar Cu(In, Ga)Se2 micro solar cells under full white light concentration. Prog. Photovolt. Res. App. 23, 2611 (2015).

    Google Scholar 

  26. Bayman, A. Miasole Flexible Product and Manufacturing IW-CIGSTech (Miasole, 2016); https://www.photovoltaic-conference.com/images/2016/2_Programme/parallel_events/7thInternationalWorkshopCIGS/Atiye_BAYMAN.pdf

  27. Yan, F., Metacarpa, D. J., Sudaramoorthy, R., Fobare, D. & Haldar, P. Evaluation of CIGS Interconnection methods. In 39th Photovoltaic Specialist Conference 2064–2067 (IEEE, 2013); https://ieeexplore.ieee.org/document/6744879/

  28. Kessler, F. & Rudmann, D. Technological aspects of flexible CIGS solar cells and modules. Solar Energy 77, 685–695 (2004).

    Article  Google Scholar 

  29. Schoop, U. Commercial Flexible CIGS Technology IW-CIGS Tech 7 (Global Solar, 2016); https://www.photovoltaic-conference.com/images/2016/2_Programme/parallel_events/7thInternationalWorkshopCIGS/Urs_SCHOOP.pdf

  30. Brown, G., Stone, P., Woodruff, J., Cardozo, B. & Jackrel, D. Device characteristics of a 17.1% efficient solar cell deposited by a non-vacuum printing method on flexible foil. In 38th Photovoltaic Specialist Conference 003230–003233 (IEEE, 2012); https://ieeexplore.ieee.org/document/6318265/

  31. The US CIGS Photovoltaic Roadmap Reports, Modules and Packaging (US PVMC, 2013); http://www.uspvmc.org/roadmap/roadmap_reports.html

  32. Powalla, M. et al. High-efficiency Cu(In, Ga)Se cells and modules. Sol. Energy Mater. Sol. Cells 119, 51–58 (2013).

    Article  Google Scholar 

  33. Rekow, M. et al. CIGS P1,P2,P3 scribing processes using a pulse programmable industrial fiber laser. In 25th European PVSEC/WCPEC-5 2862–2871(NREL, 2010); http://www.eupvsec-proceedings.com/proceedings?paper=7976

  34. Nishiwaki, S. et al. A monolithically integrated high-efficiency Cu(In,Ga)Se2 mini-module structrured solely by laser. Prog. Photovolt. Res. App. 23, 1908–1915 (2015). The importance of this paper lies in the optimization of a full laser structuring processing for P1P2P3 modularization to minimize the dead area width, as a means of increasing module efficiency.

    Article  Google Scholar 

  35. Kessler, F., Herrmann, D. & Powalla, M. Approaches to flexible CIGS thin-film solar cells. Thin Solid Films 480–481, 491–498 (2005).

    Article  Google Scholar 

  36. Ehrhardt, M. et al. Fabrication of contact holes by rear side laser ablation of polyimide foils for CIGS solar modules. Appl. Surf. Sci. 278, 219–222 (2013).

    Article  Google Scholar 

  37. Wang, X. et al. The influence of the laser parameter on the electrical shunt resistance of scribed Cu(In,Ga)Se2 solar cells by nested circular laser scribing techniques. Appl. Surf. Sci. 302, 194–197 (2014).

    Article  Google Scholar 

  38. Brecl, K., Topic, M. & Smole, F. A detailed study of monolithic contacts and electrical losses in large area thin-film module. Prog. Photovolt. 13, 297–310 (2005). This paper described the large impact of the distributed series resistance of transparent conducting oxide in monolithic devices and how it plays a crucial impact in final module performance.

    Article  Google Scholar 

  39. Fortunato, E., Ginley, D., Honoso, H. & Paine, D. C. Transparent conducting oxides for photovoltaics. MRS Bull. 32, 242 (2007).

    Article  Google Scholar 

  40. Klein, A. et al. Transparent conducting oxides for photovoltaics: Manipulation of Fermi level, work function and energy band alignment. Materials (Basel) 3, 4892–4914 (2010).

    Article  Google Scholar 

  41. Escoubas, L., Simon, J., Le Rouzo, J. & Bermudez, V. Optical Thin Films and coatings: from materials to applications (eds Piegari, A. & Flory, F.) Ch. 16 (Woodhead Publishing, Oxford, 2013)..

  42. Koida, T., Fujiwara, H. & Kondo, M. Hydrogen-doped In2O3 as high-mobility transparent conductive oxide. Jpn J. Appl. Phys. 46, 25–28 (2007).

    Article  Google Scholar 

  43. Coutts, T. J., Youg, D. L. & Li, X. Characterization of transparent conducting oxides. MRS Bull. 25, 58–65 (2000).

    Article  Google Scholar 

  44. Abou-Ras, D. et al. Innovation highway: Breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint. Thin Solid Films 633, 2–12 (2017). The paper is a useful review highlighting the main key developments in Cu(In,Ga)(S,Se)2 solar cells and modules, providing a historical perspective of the technology.

    Article  Google Scholar 

  45. Nomoto, J., Konagai, M., Miyata, T. & Minami, T. Resistivity characteristics of transparent conducting impurity-doped ZnO films for use in oxidizing environments at high temperatures. J. Vac. Sci. Tech. A 28, 861 (2010).

    Article  Google Scholar 

  46. Zhang, K., Zhu, F., Huan, C. H. A. & Wee, A. T. S. Effect of hydrogen partial pressure on optoelectronic properties of indium tin oxide thin films deposited by radio frequency magnetron sputtering method. J. Appl. Phys. 86, 974 (1999).

    Article  Google Scholar 

  47. Zhou, Z. et al. Electrical conductivity of Cu-doped ZnO and its change with hydrogen implantation. J. Eur. Ceram. Soc. 24, 139 (2004).

    Article  Google Scholar 

  48. Theys, B. et al. Effects of intentionally introduced hydrogen on the electrical properties of ZnO layers grown by metallorganic chemical vapor deposition. J. Appl. Phys. 91, 3922 (1997).

    Article  Google Scholar 

  49. Delahoy, A. E. & Guo, S. Handbook of Photovoltic Science and Engineering (eds Luque, A. & Hegedus, S.) Ch. 17 (John Wiley & Sons Ltd, Hoboken, NJ, 2011).

  50. Yoshida, Y., Wood, D. M., Gessert, T. A. & Coutts, T. J. High-mobility, sputtered films of indium oxide doped with molybdenum. Appl. Phys. Lett. 84, 2097 (2004).

    Article  Google Scholar 

  51. Delahoy, A. E., Chen, L., Akhtar, M., Sang, B. & Guo, S. New technologies for CIGS photovoltaics. Solar Energy 77, 785 (2004).

    Article  Google Scholar 

  52. Delahoy, A. E. & Guo, S. Y. Reactive-environment, hollow cathde sputtering: Basic characteristics and application to Al2O3, doped ZnO, and In2O3:Mo. J. Vac. Sci. Technol. 23, 1215 (2005).

    Article  Google Scholar 

  53. van Hest, M. F. A. M., Dabney, M. S., Perkins, J. D., Ginley, D. S. & Taylor, M. P. Titanium-doped indium oxide: A high-mobility transparent conductor. Appl. Phys. Lett. 87, 032111 (2005). This paper highlights the potential of titanium-doped indium oxide for future transparent conducting oxides with high carrier mobility and transparency for a wide range of titanium doping levels.

    Article  Google Scholar 

  54. Hashimoto, R., Abe, Y. & Nakada, T. High mobility titanium-doped In2O3 thin films prepared by sputtering/post-annealing technique. Appl. Phys. Express 1, 015002 (2008).

    Article  Google Scholar 

  55. Gupta, R. K., Ghosh, K., Mishra, S. R. & Kahol, P. K. High mobility Ti-doped In2O3 transparent conductive thin films. Mater. Lett. 62, 1033–1035 (2008).

    Article  Google Scholar 

  56. Calnan, S. et al. Application of high mobility transparent conductors to enhance long wavelength transparency on the intermediate solar cell in multi-junction solar cells. Thin Solid Films 92, 2340–2343 (2009).

    Article  Google Scholar 

  57. Shisegato, Y., Takaki, S. & Haranoh, T. Electrical and structural properties of low resistivity tin-doped indium oxide films. J. Appl. Phys. 71, 3356 (1992).

    Article  Google Scholar 

  58. Suzuki, A., Matsushita, T., Aoki, T., Yoneyama, Y. & Okuda, M. Pulsed laser deposition of transparent conducting indium tin oxide films in magnetic field perpendicular to plume. Jpn J. Appl. Phys. 40, 401 (2001).

    Article  Google Scholar 

  59. Agura, H. Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films 445, 263–267 (2003).

    Article  Google Scholar 

  60. Song, P. K., Watanabe, M., Kon, M., Mitsui, A. & Shigesato, Y. Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering. Thin Solid Films 411, 82–86 (2002).

    Article  Google Scholar 

  61. Assuncao, V., Fortunato, E. & Marques, A. Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin film produced by r.f. sputtering at room temperature. Thin Solid Films 427, 401–405 (2003).

    Article  Google Scholar 

  62. Kykyneshi, R., Zeng, J. & Cann, D. P. in Handbook of Transparent Conductors (eds Ginley, D. S. et al.) Ch. 6 (Springer, New York, 2011).

  63. Hosono, H., Yusukawa, M. & Kawazoe, H. Novel oxide amorphous semiconductors: transparent conducting amorphous oxides. J. Non-Cryst. Solids 203, 334–344 (1996).

    Article  Google Scholar 

  64. Hosono, H. in Handbook of Transparent Conductors (eds Ginley, D. S. et al.) Ch. 13 (Springer, New York, 2011).

  65. Ginley, D. S. & Perkins, J. D. in Handbook of Transparent Conductors (eds Ginley, D. S. et al.) Ch. 1 (Springer, New York, 2011).

  66. Hitosugi, T., Furubayashi, Y. & Ueda, A. Ta-doped anatase TiO2 epitaxial film as transparent conducting oxide. Jpn J. Appl. Sci. 44, L1063–L1065 (2005).

    Article  Google Scholar 

  67. Hoye, R. L. Z., Musselman, K. P. & MacManus-Criscoll, J. L. Research update: Doping ZnO and TiO2 for solar cells. Appl. Phys. Lett. Materi. 1, 060701 (2013).

    Google Scholar 

  68. Mason, T. O., Harvey, S. P. & Poeppelmeier, K. R. in Handbook of Transparent Conductors (eds Ginley, D. S. et al.) Ch. 8 (Springer, New York, 2011).

  69. Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photon. 6, 809–817 (2012).

    Article  Google Scholar 

  70. Minami, T. New n-type transparent conducting oxides. MRS Bull. 25, 38–44 (2000).

    Article  Google Scholar 

  71. Granqvist, C. G. Transparent conductors as solar energy materials: A panoramic view. Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007).

    Article  Google Scholar 

  72. Lee, J.-Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processes metals nanowire mesh transparent electrodes. Nano Lett. 8, 680–692 (2008).

    Google Scholar 

  73. Barnes, T. M., Reese, M. O. & Bergeson, J. D. Comparing the fundamental physics and device performanec of transparent conductive nanostructured networks with conventional transparent conducting oxides. Adv. Energy Mater. 2, 353–360 (2012).

    Article  Google Scholar 

  74. Krantz, J., Richter, M., Spallek, S., Spiecker, E. & Brabec, C. J. Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-gilm solar cells. Adv. Funct. Mater. 21, 4784–4787 (2011).

    Article  Google Scholar 

  75. Bae, S., Kim, H. & Lee, Y. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 5, 574–578 (2010).

    Article  Google Scholar 

  76. Gongoni, P. Nanostructured Transparent Conducting Oxides for Advanced Photovoltaic Applications. PhD Thesis, Politecnico di Milano (2013).

  77. Sittinger, V., Dewald, W., Werner, W., Szyszka, B. & Ruske, F. Transparent conducting oxide deposition techniques for thin-film photovoltaics. Photovolt. Int. 10, 108–115 (2011).

    Google Scholar 

  78. Pern, F. J. & Noufi, R. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method SPIE Optics + Photonics (NREL, 2012); https://www.nrel.gov/docs/fy13osti/54187.pdf

  79. Solibro company and product presentation Solibro https://go.nature.com/2kk2Ss2 (2013).

  80. Solibro’s productive technology surpasses 16% efficiency Solibro http://solibro-solar.com/en/news-downloads/news (2018).

  81. Dongaonkar, S. & Alam, M. A. In-line post-process scribing for reducing cell to module efficiency gap in monolithic thin-film photovoltaics. IEEE J. Photovolt. 4, 324–332 (2014).

    Article  Google Scholar 

  82. Olaisen, B. R. et al. CIGS mini-modules with screen-printed front contacts. In 15th International Photovoltaic Science and Engineering Conference (PVSEC-15) 612–613 (2005); https://www.ife.no/en/ife/main_subjects_new/energy_environment/pv/papers/paper-cigs-mini-modules-with-screen-printed-front-contacts

  83. Xie, L. et al. Electrical performance and reliability evaluation of inkjet-printed Ag interconnections on paper substrates. Mater. Lett. 88, 68–72 (2012).

    Article  Google Scholar 

  84. Investors express confidence in ultrafast ALD Solaytec http://www.solaytec.com/news/press-releases/3

  85. Miikkulainen, V., Leskela, M., Ritala, M. & Puurunen, R. L. Crystallinity of inorganic films grown by atomic layer deposition: Overview and genera trends. J. Appl. Phys. 113, 021301 (2013).

    Article  Google Scholar 

  86. Bermudez, V. Economical and operational issues for CIGS in the future PV panorama. Solar Energy 146, 85–93 (2017).

    Article  Google Scholar 

  87. Contreras, M. et al. Graded band-gap Cu(In, Ga)Se2 thin-film solar cell absorber with enhanced open circuit voltage. Appl. Phys. Lett. 63, 198–200 (1993).This paper demonstrates the achievement of a high voltage device thanks to the control of In/Ga depth profile composition through the absorber with a computer controlled physical vapor deposition approach..

    Article  Google Scholar 

  88. Siebentritt, S. Wide gap chalcopyrites: materials properties and solar cells. Thin Solid Films 403–404, 1–8 (2002).

    Article  Google Scholar 

  89. Siebentritt, S., Rau, U. (eds). Wide-Gap Chalcopyrites (Springer, Berlin, 2006).

  90. Dongaonkar, S. & Alam, M. A. In-line post-process scribing for reducing cell to module efficiency gap in monolithic thin-film photovoltaics. IEEE J. Photovolt. 4, 324–332 (2014). This paper demonstrates that it is possible to recover up to 50% of power losses through the reduction of cell to module gap via the minimization of parasitic shunts with state of the art laser scribing processes.

    Article  Google Scholar 

  91. Illiberi, A. et al. Industrial high-rate (~14nm/s) deposition of low resistive and transparent ZnOx:Al films on glass. Sol. Energy Mater. Sol. Cells 95, 1955–1959 (2011).

    Article  Google Scholar 

  92. van Deelen, J., Rendering, H., het Mannetje, H. & Hovestad, A. Grids on TCO for highly transparent materials with a resistivity below 1 Ohm/sq. In 37th Photovoltaic Specialist Conference 000768–000770 (IEEE, 2011); https://ieeexplore.ieee.org/document/6186066/

  93. Abou-Ras, D. et al. Impact of Ga concentration on the micrstructure of CuInGaSe2. Phys. Stat. Sol. (RRL) 2, 135–137 (2008).

    Article  Google Scholar 

  94. Hahn, T., Cieslak, J. & Metzner, H. Metastability of CuInS2 and its implications on thin film growth. Appl. Phys. Lett. 88, 171915 (2006).

    Article  Google Scholar 

  95. Hanket, G. M., Thompson, C. P. Larsen, J., Eser, E. & Shafarman, W. N. Control of Ga profiles in (AgCu)(InGa)Se2 absorber layers deposited on polyimide substrates. In 38th Photovoltaic Specialist Conference 000662-000667 (IEEE, 2012); https://ieeexplore.ieee.org/document/6317696/

  96. Hiroi, H., Iwata, Y., Sugimoto, H. & Yamada, A. Progress toward 1000-mV open-circuit voltage on chalcopyrite solar cells. IEEE J. Photovolt. 6, 1630–1634 (2016).

    Article  Google Scholar 

  97. Lordi, V. Rational Design of Wide Band Gap Buffer Layers for high Efficiency Thin-Film Photovoltaics (Lawrence Livermore National Laborator, 2016).

  98. Chen, L., Lee, J. W. & Shafarman, W. N. The comparison of (Ag,Cu)(In,Ga)Se2 and Cu(In,Ga)Se2 thin films deposited by three-stage coevaporation. IEEE J. Photovolt. 4, 447–451 (2014).

    Article  Google Scholar 

  99. Salome, P. M. P., Rodriguez-Alvarez, H. & Sadewasser, S. Incorporation of alkali metals in chalcogenide solar cells. Sol. Energy Mater. Sol. Cells 143, 9–20 (2015).

    Article  Google Scholar 

  100. Hirai, Y., Kurakawa, Y. & Yamada, A. Numerical study of Cu(In,Ga)Se2 solar cell performance towards 23% conversion efficiency. Jpn J. Appl. Phys. 53, 012301 (2014).This work analyses the effect of minimum bandgap and its position for materials with wide average bandgap around 1.4 eV. The paper shows the importance of valence band off set between the buffer and the absorber for wide bandgap devices..

    Article  Google Scholar 

  101. Burgelman, M. & Niemegeers, A. Calculation of CIS and CdTe module efficiencies. Sol. Energy Mater. Sol. Cells 51, 129–143 (1998).

    Article  Google Scholar 

  102. Kessler, J.., Wennerberg, J.., Bodegard, M.., & Stolt, L.. Highly efficient Cu(In, Ga)Se2 mini-modules. Sol. Energy Mater. Sol. Cells 75, 35–46 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

A.P.-R. acknowledges financial supports from the Spanish MINECO (Ministerio de Economía, Industria y Competitividad) under the WINCOST project (ENE2016-80788-C5-1-R), the European Regional Development Founds (ERDF, FEDER Programa Competitivitat de Catalunya 2007–2013) and the CERCA Programme from the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Bermudez.

Ethics declarations

Competing interests

V.B. is currently working at the Atsugi Research Center of Solar Frontier K.K.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bermudez, V., Perez-Rodriguez, A. Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up. Nat Energy 3, 466–475 (2018). https://doi.org/10.1038/s41560-018-0177-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0177-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing