Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells


Enzymes are promising electrocatalysts for electron transfer (ET) in many biological processes. Strategies to enhance ET between enzymes and electroactive surfaces include orientation and immobilization of the enzymes and electron mediation. Here, we develop a strategy to couple orientation and electron mediation on electrodes based on carbon nanotubes. This is achieved by the synthesis of a redox mediator that contains an enzyme-orientation site (pyrene), an electron-carrier redox mediator (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)) and an electropolymerizable monomer (pyrrole). The coupling of an enzymatic orientation and a mediated ET in the same chemical structure (pyrrole–ABTS–pyrene (pyrr–ABTS–pyr)) provides a much-improved performance in the bioelectrocatalysis. We demonstrate two fuel cells for the synthesized redox mediator. In a proton-exchange membrane hydrogen/air fuel cell and in a membraneless fuel cell, the pyrr–ABTS–pyr biocathode provides a power density of 1.07 mW cm−2 and 7.9 mW cm−2, respectively. The principle of coupling an enzyme orientation and a redox mediator allows a great variety of mediators to be engineered and provides vast possibilities for the development of fuel cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The as-designed poly(pyrr)–ABTS–pyr film.
Fig. 2: Electropolymerization of the pyrr–ABTS–pyr monomer.
Fig. 3: Structural features of pyrr–ABTS–pyr redox film.
Fig. 4: The pyrr–ABTS–pyr monomer as a redox mediator for the bioelectrocatalytic reduction of oxygen by Lac.
Fig. 5: QCM measurement during the immobilization of Lac.
Fig. 6: Chronoamperometry on pyrr–ABTS–pyr for the bioelectrocatalytic reduction of oxygen by Lac.
Fig. 7: MlFC performance.
Fig. 8: PEMFC performance.

Similar content being viewed by others


  1. Calabrese Barton, S., Gallaway, J. & Atanassov, P. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104, 4867–4886 (2004).

    Article  Google Scholar 

  2. Cooney, M. J., Svoboda, V., Lau, C., Martin, G. & Minteer, S. D. Enzyme catalysed biofuel cells. Energy Environ. Sci. 1, 320–337 (2008).

    Article  Google Scholar 

  3. Rubin, E. M. Genomics of cellulosic biofuels. Nature 454, 841–845 (2008).

    Article  Google Scholar 

  4. Elouarzaki, K. et al. Freestanding HRP–GOx redox buckypaper as an oxygen-reducing biocathode for biofuel cell applications. Energy Environ. Sci. 8, 2069–2074 (2015).

    Article  Google Scholar 

  5. Yehezkeli, O. et al. Integrated photosystem II-based photo-bioelectrochemical cells. Nat. Commun. 3, 742 (2012).

    Article  Google Scholar 

  6. Frew, J. E. & Hill, H. A. O. Direct and indirect electron transfer between electrodes and redox proteins. Eur. J. Biochem. 172, 261–269 (1988).

    Article  Google Scholar 

  7. Fultz, M. L. & Durst, R. A. Mediator compounds for the electrochemical study of biological redox systems: a compilation. Anal. Chim. Acta 140, 1–18 (1982).

    Article  Google Scholar 

  8. Sund, C. J., McMasters, S., Crittenden, S. R., Harrell, L. E. & Sumner, J. J. Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl. Microbiol. Biotechnol. 76, 561–568 (2007).

    Article  Google Scholar 

  9. Belevich, I., Verkhovsky, M. I. & Wikström, M. Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature 440, 829–832 (2006).

    Article  Google Scholar 

  10. Gust, D., Moore, T. A. & Moore, A. L. Molecular mimicry of photosynthetic energy and electron transfer. Acc. Chem. Res. 26, 198–205 (1993).

    Article  Google Scholar 

  11. Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S. & Dutton, P. L. Nature of biological electron transfer. Nature 355, 796–802 (1992).

    Article  Google Scholar 

  12. Zebda, A. et al. Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube–enzyme electrodes. Nat. Commun. 2, 370 (2011).

    Article  Google Scholar 

  13. Agnes, C. et al. Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions. Energy Environ. Sci. 7, 1884–1888 (2014).

    Article  Google Scholar 

  14. Bourourou, M. et al. Freestanding redox buckypaper electrodes from multi-wall carbon nanotubes for bioelectrocatalytic oxygen reduction via mediated electron transfer. Chem. Sci. 5, 2885–2888 (2014).

    Article  Google Scholar 

  15. Chaudhuri, S. K. & Lovley, D. R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotech. 21, 1229–1232 (2003).

    Article  Google Scholar 

  16. Gao, F., Viry, L., Maugey, M., Poulin, P. & Mano, N. Engineering hybrid nanotube wires for high-power biofuel cells. Nat. Commun. 1, 2 (2010).

    Article  Google Scholar 

  17. Shleev, S., Pita, M., Yaropolov, A. I., Ruzgas, T. & Gorton, L. Direct heterogeneous electron transfer reactions of Trametes hirsuta laccase at bare and thiol-modified gold electrodes. Electroanalysis 18, 1901–1908 (2006).

    Article  Google Scholar 

  18. Solomon, E. I., Szilagyi, R. K., DeBeer George, S. & Basumallick, L. Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. Chem. Rev. 104, 419–458 (2004).

    Article  Google Scholar 

  19. Bertrand, T. et al. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41, 7325–7333 (2002).

    Article  Google Scholar 

  20. Piontek, K., Antorini, M. & Choinowski, T. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J. Biol. Chem. 277, 37663–37669 (2002).

    Article  Google Scholar 

  21. Enguita, F. J. et al. Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. J. Biol. Chem. 279, 23472–23476 (2004).

    Article  Google Scholar 

  22. Blanford, C. F., Heath, R. S. & Armstrong, F. A. A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface. Chem. Commun. 0, 1710–1712 (2007).

    Article  Google Scholar 

  23. Lalaoui, N., Elouarzaki, K., Goff, A. L., Holzinger, M. & Cosnier, S. Efficient direct oxygen reduction by laccases attached and oriented on pyrene-functionalized polypyrrole/carbon nanotube electrodes. Chem. Commun. 49, 9281–9283 (2013).

    Article  Google Scholar 

  24. Bourourou, M. et al. Supramolecular immobilization of laccase on carbon nanotube electrodes functionalized with (methylpyrenylaminomethyl)anthraquinone for direct electron reduction of oxygen. Chem. Eur. J. 19, 9371–9375 (2013).

    Article  Google Scholar 

  25. Mano, N. et al. Oxygen Is electroreduced to water on a 'wired' enzyme electrode at a lesser overpotential than on platinum. J. Am. Chem. Soc. 125, 15290–15291 (2003).

    Article  Google Scholar 

  26. Soukharev, V., Mano, N. & Heller, A. A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J. Am. Chem. Soc. 126, 8368–8369 (2004).

    Article  Google Scholar 

  27. Cardoso, F. P. et al. Biocathodes for enzymatic biofuel cells using laccase and different redox mediators entrapped in polypyrrole matrix. J. Electrochem. Soc. 161, F445–F450 (2014).

    Article  Google Scholar 

  28. Chen, T. et al. A miniature biofuel cell. J. Am. Chem. Soc. 123, 8630–8631 (2001).

    Article  Google Scholar 

  29. Kiiskinen, L.-L., Viikari, L. & Kruus, K. Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces. Appl. Microbiol. Biotechnol. 59, 198–204 (2002).

    Article  Google Scholar 

  30. Lee, J. Y., Shin, H. Y., Kang, S. W., Park, C. & Kim, S. W. Use of bioelectrode containing DNA-wrapped single-walled carbon nanotubes for enzyme-based biofuel cell. J. Power Sources 195, 750–755 (2010).

    Article  Google Scholar 

  31. Lalaoui, N. et al. Hosting adamantane in the substrate pocket of laccase: direct bioelectrocatalytic reduction of O2 on functionalized carbon nanotubes. ACS Catal. 6, 4259–4264 (2016).

    Article  Google Scholar 

  32. Krishnan, S. & Armstrong, F. A. Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures. Chem. Sci. 3, 1015–1023 (2012).

    Article  Google Scholar 

  33. Wang, Y., Esterle, T. F. & Armstrong, F. A. Electrocatalysis by H2–O2 membrane-free fuel cell enzymes in aqueous microenvironments confined by an ionic liquid. RSC Adv. 6, 44129–44134 (2016).

    Article  Google Scholar 

  34. Xu, L. & Armstrong, F. A. Optimizing the power of enzyme-based membrane-less hydrogen fuel cells for hydrogen-rich H2–air mixtures. Energy Environ. Sci. 6, 2166–2171 (2013).

    Article  Google Scholar 

  35. Ding, S.-N., Cosnier, S., Holzinger, M. & Wang, X. Electrochemical fabrication of novel fluorescent polymeric film: poly(pyrrole–pyrene). Electrochem. Commun. 10, 1423–1426 (2008).

    Article  Google Scholar 

  36. Tsujimura, S., Fujita, M., Tatsumi, H., Kano, K. & Ikeda, T. Bioelectrocatalysis-based dihydrogen/dioxygen fuel cell operating at physiological pH. Phys. Chem. Chem. Phys. 3, 1331–1335 (2001).

    Article  Google Scholar 

  37. Tarasevich, M. R., Bogdanovskaya, V. A., Zagudaeva, N. M. & Kapustin, A. V. Composite materials for direct bioelectrocatalysis of the hydrogen and oxygen reactions in biofuel cells. Russ. J. Electrochem. 38, 335–335 (2002).

    Article  Google Scholar 

  38. Villalonga, R. et al. Supramolecular assembly of β-cyclodextrin-modified gold nanoparticles and Cu, Zn-superoxide dismutase on catalase. J. Mol. Catal. B 35, 79–85 (2005).

    Article  Google Scholar 

Download references


This project is funded by the National Research Foundation, Prime Minister’s Office, Singapore, under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.

Author information

Authors and Affiliations



K.E., A.C.F. and J.-M.L. designed the chemical structures. K.E. developed the protocol for the organic synthesis. D.C. made the fuel cell reactor. K.E. and A.F. carried out the electrochemical characterization. J.-M.L. designed the electrode functionalized with polymers and Lac, and K.E. conducted all the experiments. J.-M.L. was responsible for the project management. K.E and J.-M.L. prepared the manuscript.

Corresponding author

Correspondence to Jong-Min Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elouarzaki, K., Cheng, D., Fisher, A.C. et al. Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells. Nat Energy 3, 574–581 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing