III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration

Subjects

An Author Correction to this article was published on 25 June 2018

An Author Correction to this article was published on 03 May 2018

This article has been updated

Abstract

Silicon dominates the photovoltaic industry but the conversion efficiency of silicon single-junction solar cells is intrinsically constrained to 29.4%, and practically limited to around 27%. It is possible to overcome this limit by combining silicon with high-bandgap materials, such as III–V semiconductors, in a multi-junction device. Significant challenges associated with this material combination have hindered the development of highly efficient III–V/Si solar cells. Here, we demonstrate a III–V/Si cell reaching similar performances to standard III–V/Ge triple-junction solar cells. This device is fabricated using wafer bonding to permanently join a GaInP/GaAs top cell with a silicon bottom cell. The key issues of III–V/Si interface recombination and silicon's weak absorption are addressed using poly-silicon/SiOx passivating contacts and a novel rear-side diffraction grating for the silicon bottom cell. With these combined features, we demonstrate a two-terminal GaInP/GaAs//Si solar cell reaching a 1-sun AM1.5G conversion efficiency of 33.3%.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structure of the two-terminal wafer-bonded III–V//Si triple-junction cell.
Fig. 2: Characteristics of the III–V//Si wafer-bonded interface.
Fig. 3: Performance and statistics of GaInP/GaAs//Si cells without light trapping.
Fig. 4: Enhancing the infrared response of silicon with a photonic light-trapping structure.
Fig. 5: Performance of the best two-terminal III–V//Si cell with passivating contacts and a photonic light-trapping structure.
Fig. 6: Benchmarking of two-terminal III–V//Si cell subcell Voc and spectrum utilization plot.

Change history

  • 25 June 2018

    In the version of this Article originally published, in the ‘Rear-side light trapping’ paragraph of the Methods section, the values of depth and fill factor were incorrectly given as 350 nm and 50%, respectively; instead, the values should have read 250 nm and 60%. This has now been corrected.

  • 03 May 2018

    In the version of this Article originally published, in the legend in Fig. 5a, the blue, green and red lines were incorrectly labelled as GaAs, Si and GaInP, respectively; instead, the labels should have read, respectively, GaInP, GaAs and Si. This has now been corrected.

References

  1. 1.

    Green, M. A. The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Prog. Photovolt. Res. Appl. 17, 183–189 (2009).

    Article  Google Scholar 

  2. 2.

    Masuko, K. et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433–1435 (2014).

    Article  Google Scholar 

  3. 3.

    Smith, D. D. et al. Toward the practical limits of silicon solar cells. IEEE J. Photovolt. 4, 1465–1469 (2014).

    Article  Google Scholar 

  4. 4.

    Glunz, S. W. et al. The irresistible charm of a simple current flow pattern – 25% with a solar cell featuring a full-area back contact. In Proc. 31st European Photovoltaic Solar Energy Conference and Exhibition 259–263 (2015); https://doi.org/10.4229/EUPVSEC20152015-2BP.1.1

  5. 5.

    Adachi, D., Hernández, J. L. & Yamamoto, K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 107, 233506 (2015).

    Article  Google Scholar 

  6. 6.

    Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: Present efficiencies and future challenges. Science 352, aad4424 (2016).

    Article  Google Scholar 

  7. 7.

    Battaglia, C., Cuevas, A. & Wolf, S. D. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016).

    Article  Google Scholar 

  8. 8.

    Richter, A. et al. n-Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol. Energy Mater. Sol. Cells 173, 96–105 (2017).

    Article  Google Scholar 

  9. 9.

    Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    Article  Google Scholar 

  10. 10.

    Green, M. A. et al. Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25, 668–676 (2017).

    Article  Google Scholar 

  11. 11.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510 (1961).

    Article  Google Scholar 

  12. 12.

    Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).

    Article  Google Scholar 

  13. 13.

    Mitchell, B. et al. Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency. Prog. Photovolt. Res. Appl. 19, 61–72 (2011).

    Article  Google Scholar 

  14. 14.

    Polman, A. & Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 11, 174–177 (2012).

    Article  Google Scholar 

  15. 15.

    Goldschmidt, J. C., Do, C., Peters, M. & Goetzberger, A. Spectral splitting module geometry that utilizes light trapping. Sol. Energy Mater. Sol. Cells 108, 57–64 (2013).

    Article  Google Scholar 

  16. 16.

    Green, M. A. et al. 40% efficient sunlight to electricity conversion. Prog. Photovolt. Res. Appl. 23, 685–691 (2015).

    Article  Google Scholar 

  17. 17.

    Sheng, X. et al. Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. Nat. Mater. 13, 593–598 (2014).

    Article  Google Scholar 

  18. 18.

    Mathews, I. et al. Adhesive bonding for mechanically stacked solar cells. Prog. Photovolt. Res. Appl. 23, 1080–1090 (2015).

    Article  Google Scholar 

  19. 19.

    Essig, S. et al. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2, 17144 (2017).

    Article  Google Scholar 

  20. 20.

    Albrecht, S. & Rech, B. Perovskite solar cells: On top of commercial photovoltaics. Nat. Energy 2, 16196 (2017).

    Article  Google Scholar 

  21. 21.

    Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  Google Scholar 

  22. 22.

    Werner, J., Niesen, B. & Ballif, C. Perovskite/silicon tandem solar cells: marriage of convenience or true love story? – An overview. Adv. Mater. Interfaces 5, 1700731 (2018).

    Article  Google Scholar 

  23. 23.

    Essig, S. et al. Wafer-bonded GaInP/GaAs//Si solar cells with 30% efficiency under concentrated sunlight. IEEE J. Photovolt. 5, 977–981 (2015).

    Article  Google Scholar 

  24. 24.

    Baba, M. et al. Feasibility study of two-terminal tandem solar cells integrated with smart stack, areal current matching, and low concentration. Prog. Photovolt. Res. Appl. 25, 255–263 (2017).

    Article  Google Scholar 

  25. 25.

    Lee, K.-H. et al. Assessing material qualities and efficiency limits of III–V on silicon solar cells using external radiative efficiency. Prog. Photovolt. Res. Appl. 24, 1310–1318 (2016).

    Article  Google Scholar 

  26. 26.

    Cariou, R. et al. Monolithic two-terminal III-V//Si triple-junction solar cells with 30.2% efficiency under 1-sun AM1.5g. IEEE J. Photovolt. 7, 367–373 (2017).

    Article  Google Scholar 

  27. 27.

    Yu, Z. J., Leilaeioun, M. & Holman, Z.. Selecting tandem partners for silicon solar cells. Nat. Energy 1, 16137 (2016).

    Article  Google Scholar 

  28. 28.

    Bolkhovityanov, Y. B. & Pchelyakov, O. P. GaAs epitaxy on Si substrates: modern status of research and engineering. Phys. Usp. 51, 437 (2008).

    Article  Google Scholar 

  29. 29.

    Umeno, M., Kato, T., Egawa, T., Soga, T. & Jimbo, T. High efficiency AlGaAs/Si tandem solar cell over 20%. Sol. Energy Mater. Sol. Cells 41–42, 395–403 (1996).

    Article  Google Scholar 

  30. 30.

    Grassman, T. J., Chmielewski, D. J., Carnevale, S. D., Carlin, J. A. & Ringel, S. A. GaAs0.75P0.25/Si dual-junction solar cells grown by MBE and MOCVD. IEEE J. Photovolt. 6, 326–331 (2016).

    Article  Google Scholar 

  31. 31.

    Ohlmann, J. et al. Influence of metal-organic vapor phase epitaxy reactor environment on the silicon bulk lifetime. IEEE J. Photovolt. 6, 1668–1672 (2016).

    Article  Google Scholar 

  32. 32.

    Feldmann, F., Bivour, M., Reichel, C., Hermle, M. & Glunz, S. W. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).

    Article  Google Scholar 

  33. 33.

    Feldmann, F., Reichel, C., Müller, R. & Hermle, M. The application of poly-Si/SiOx contacts as passivated top/rear contacts in Si solar cells. Sol. Energy Mater. Sol. Cells 159, 265–271 (2017).

    Article  Google Scholar 

  34. 34.

    Hauser, H. et al. Honeycomb texturing of silicon via nanoimprint lithography for solar cell applications. IEEE J. Photovolt. 2, 114–122 (2012).

    Article  Google Scholar 

  35. 35.

    Tucher, N., Höhn, O., Hauser, H., Müller, C. & Bläsi, B. Characterizing the degradation of PDMS stamps in nanoimprint lithography. Microelectron. Eng. 180, 40–44 (2017).

    Article  Google Scholar 

  36. 36.

    Yablonovitch, E., Gmitter, T., Swanson, R. M. & Kwark, Y. H. A 720 mV open circuit voltage SiOx:c‐Si:SiOx double heterostructure solar cell. Appl. Phys. Lett. 47, 1211–1213 (1985).

    Article  Google Scholar 

  37. 37.

    Gan, J. Y. & Swanson, R. M. Polysilicon emitters for silicon concentrator solar cells. In Proc. IEEE Conference on Photovoltaic Specialists Vol. 1, 245–250 (1990); https://doi.org/10.1109/PVSC.1990.111625

  38. 38.

    Yan, D., Cuevas, A., Bullock, J., Wan, Y. & Samundsett, C. Phosphorus-diffused polysilicon contacts for solar cells. Sol. Energy Mater. Sol. Cells 142, 75–82 (2015).

    Article  Google Scholar 

  39. 39.

    Peibst, R. et al. Working principle of carrier selective poly-Si/c-Si junctions: Is tunnelling the whole story? Sol. Energy Mater. Sol. Cells 158, 60–67 (2016).

    Article  Google Scholar 

  40. 40.

    Flotgen, C., Razek, N., Dragoi, V. & Wimplinger, M. Novel surface preparation methods for covalent and conductive bonded interfaces fabrication. ECS Trans. 64, 103–110 (2014).

    Article  Google Scholar 

  41. 41.

    Häussler, D. et al. Aberration-corrected transmission electron microscopy analyses of GaAs/Si interfaces in wafer-bonded multi-junction solar cells. Ultramicroscopy 134, 55–61 (2013).

    Article  Google Scholar 

  42. 42.

    Campbell, P. & Green, M. A. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62, 243–249 (1987).

    Article  Google Scholar 

  43. 43.

    Larionova, Y. et al. On the recombination behavior of p+-type polysilicon on oxide junctions deposited by different methods on textured and planar surfaces: On the recombination behavior of p+-type polysilicon on oxide junctions. Phys. Status Solidi A 214, 1700058 (2017).

    Article  Google Scholar 

  44. 44.

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    Article  Google Scholar 

  45. 45.

    Peters, M., Rüdiger, M., Hauser, H., Hermle, M. & Bläsi, B. Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms. Prog. Photovolt. Res. Appl. 20, 862–873 (2012).

    Article  Google Scholar 

  46. 46.

    Eisenlohr, J. et al. Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells. Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).

    Article  Google Scholar 

  47. 47.

    Eisenlohr, J. et al. Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping. Sol. Energy Mater. Sol. Cells 155, 288–293 (2016).

    Article  Google Scholar 

  48. 48.

    Hauser, H. et al. Development of nanoimprint processes for photovoltaic applications. J. Micro/Nanolithogr. MEMS MOEMS 14, 031210 (2015).

    Article  Google Scholar 

  49. 49.

    King, R. R. et al. Band gap-voltage offset and energy production in next-generation multijunction solar cells. Prog. Photovolt. Res. Appl. 19, 797–812 (2011).

    Article  Google Scholar 

  50. 50.

    Taguchi, M. et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014).

    Article  Google Scholar 

  51. 51.

    Wolf, A. J. et al. Origination of nano- and microstructures on large areas by interference lithography. Microelectron. Eng. 98, 293–296 (2012).

    Article  Google Scholar 

  52. 52.

    Shaw, J. M., Gelorme, J. D., LaBianca, N. C., Conley, W. E. & Holmes, S. J. Negative photoresists for optical lithography. IBM J. Res. Dev. 41, 81–94 (1997).

    Article  Google Scholar 

  53. 53.

    Meusel, M. et al. Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation. Prog. Photovolt. Res. Appl. 11, 499–514 (2003).

    Article  Google Scholar 

  54. 54.

    Siefer, G., Gandy, T., Schachtner, M., Wekkeli, A. & Bett, A. W. Improved grating monochromator set-up for EQE measurements of multi-junction solar cells. In Proc. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) 0086–0089 (2013); https://doi.org/10.1109/PVSC.2013.6744105

  55. 55.

    Meusel, M., Adelhelm, R., Dimroth, F., Bett, A. W. & Warta, W. Spectral mismatch correction and spectrometric characterization of monolithic III–V multi-junction solar cells. Prog. Photovolt. Res. Appl. 10, 243–255 (2002).

    Article  Google Scholar 

  56. 56.

    Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

    Article  Google Scholar 

  57. 57.

    Roensch, S., Hoheisel, R., Dimroth, F. & Bett, A. W. Subcell I–V characteristic analysis of GaInP/GaInAs/Ge solar cells using electroluminescence measurements. Appl. Phys. Lett. 98, 251113 (2011).

    Article  Google Scholar 

  58. 58.

    Kirchartz, T. et al. Internal voltages in GaInP∕GaInAs∕Ge multijunction solar cells determined by electroluminescence measurements. Appl. Phys. Lett. 92, 123502 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Fraunhofer ISE employees E. Oliva, A. Schütte, R. Koch, M. Graf, E. Schäffer, M. Schachtner, E. Fehrenbacher, A. Wekkeli, K. Wagner, S. Stättner, R. Freitas, A. Lösel, A. Leimenstoll, F. Schätzle and V. Klinger for helping with device processing and characterization. We also thank T. Höche and C. Patzig from Fraunhofer IMWS for the TEM studies. We further acknowledge financial support through the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie HISTORIC grant agreement no. 655272 and the German Ministry for Economic Affairs and Energy through the project PoTaSi (no. 0324247). The development of the Si bottom cell received funding through the EU project NanoTandem under grant agreement no. 641023. This article reflects only the authors' view and the funding agency is not responsible for any use that may be made of the information it contains.

Author information

Affiliations

Authors

Contributions

R.C. carried out experiments in the laboratory, theoretical modelling and evaluation of the data; R.C. and J.B. led the process development and optimization. F.F., M.H. and S.W.G. developed the passivating and carrier-selective contact Si bottom cell; S.W.G. also performed the analysis of spectrum utilization in Fig. 5d. P.B. improved the III–V layer structure and performed the epitaxy growth. D.L. performed band structure simulations and coordinated the epitaxy research. N.R. performed the wafer bonding and coordinated the TEM analysis; M.W. supervised the wafer bonding collaboration and led the design of the EVG580 ComBond cluster tool. O.H. and H.H. proposed the idea of the specific rear-side diffraction grating and developed and fabricated the crossed grating together. B.B. supported the understanding and fine-tuning of the rear-side grating and coordinated the photonic light-trapping research. G.S. supervised the cell calibration and ensured the accuracy of the measurements. A.W.B. supported discussions and editing of the manuscript and F.D. developed the concept of two-terminal III–V//Si tandem cells by direct wafer bonding and contributed to many aspects of the cell design and process optimization. All co-authors participated in the discussions and improvements of this manuscript.

Corresponding author

Correspondence to Romain Cariou.

Ethics declarations

Competing interests

The authors N. Razek and M. Wimplinger are employed by EV Group E. Thallner GmbH, 4782 St Florian am Inn, Austria, which produces the wafer bonding machine used in this study.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4 and Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cariou, R., Benick, J., Feldmann, F. et al. III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nat Energy 3, 326–333 (2018). https://doi.org/10.1038/s41560-018-0125-0

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing