Article

Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature

  • Nature Energyvolume 3pages236242 (2018)
  • doi:10.1038/s41560-018-0106-3
  • Download Citation
Received:
Accepted:
Published:

Abstract

In common photovoltaic devices, the part of the incident energy above the absorption threshold quickly ends up as heat, which limits their maximum achievable efficiency to far below the thermodynamic limit for solar energy conversion. Conversely, the conversion of the excess kinetic energy of the photogenerated carriers into additional free energy would be sufficient to approach the thermodynamic limit. This is the principle of hot carrier devices. Unfortunately, such device operation in conditions relevant for utilization has never been evidenced. Here, we show that the quantitative thermodynamic study of the hot carrier population, with luminance measurements, allows us to discuss the hot carrier contribution to the solar cell performance. We demonstrate that the voltage and current can be enhanced in a semiconductor heterostructure due to the presence of the hot carrier population in a single InGaAsP quantum well at room temperature. These experimental results substantiate the potential of increasing photovoltaic performances in the hot carrier regime.

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Green, M. A. et al. Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25, 668–676 (2017).

  2. 2.

    Green, M. A. Third Generation Photovoltaics (Springer-Verlag, Berlin/Heidelberg, 2006).

  3. 3.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

  4. 4.

    Ross, R. T. & Nozik, A. J. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53, 3813–3818 (1982).

  5. 5.

    Kettemann, S. & Guillemoles, J.-F. Thermoelectric field effects in low-dimensional structure solar cells. Phys. E Low Dimens. Syst. Nanostruct. 14, 101–106 (2002).

  6. 6.

    Würfel, P. Solar energy conversion with hot electrons from impact ionisation. Sol. Energy Mater. Sol. Cells 46, 43–52 (1997).

  7. 7.

    Rosenwaks, Y. et al. Hot-carrier cooling in GaAs: Quantum wells versus bulk. Phys. Rev. B 48, 14675–14678 (1993).

  8. 8.

    Xu, Z. Y. & Tang, C. L. Picosecond relaxation of hot carriers in highly photoexcited bulk GaAs and GaAs-AlGaAs multiple quantum wells. Appl. Phys. Lett. 44, 692–694 (1984).

  9. 9.

    Ryan, J. F. Time-resolved photoluminescence of two-dimensional hot carriers in GaAs-AlGaAs heterostructures. Phys. Rev. Lett. 53, 1841–1844 (1984).

  10. 10.

    Shah, J. Energy-loss rates for hot electrons and holes in GaAs quantum wells. Phys. Rev. Lett. 54, 2045–2048 (1985).

  11. 11.

    Leo, K. Reduced dimensionality of hot-carrier relaxation in GaAs quantum wells. Phys. Rev. B 37, 7121–7124 (1988).

  12. 12.

    Lugli, P. Nonequilibrium longitudinal-optical phonon effects in GaAs-AlGaAs quantum wells. Phys. Rev. Lett. 59, 716–719 (1987).

  13. 13.

    Conibeer, G. et al. Modelling of hot carrier solar cell absorbers. Sol. Energy Mater. Sol. Cells 94, 1516–1521 (2010).

  14. 14.

    Le Bris, A. & Guillemoles, J.-F. Hot carrier solar cells: Achievable efficiency accounting for heat losses in the absorber and through contacts. Appl. Phys. Lett. 97, 113506 (2010).

  15. 15.

    Le Bris, A. et al. Thermalisation rate study of GaSb-based heterostructures by continuous wave photoluminescence and their potential as hot carrier solar cell absorbers. Energy Environ. Sci. 5, 6225–6232 (2012).

  16. 16.

    Le Bris, A. et al. Hot carrier solar cells: controlling thermalization in ultrathin devices. IEEE J. Photovolt. 2, 506–511 (2012).

  17. 17.

    Hirst, L. C., Walters, R. J., Führer, M. F. & Ekins-Daukes, N. J. Experimental demonstration of hot-carrier photo-current in an InGaAs quantum well solar cell. Appl. Phys. Lett. 104, 231115 (2014).

  18. 18.

    Rodière, J., Lombez, L., Le Corre, A., Durand, O. & Guillemoles, J.-F. Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures. Appl. Phys. Lett. 106, 183901 (2015).

  19. 19.

    Esmaielpour, H. et al. Suppression of phonon-mediated hot carrier relaxation in type-II InAs/AlAs x Sb1 -x quantum wells: a practical route to hot carrier solar cells. Prog. Photovolt. Res. Appl. 24, 591–599 (2016).

  20. 20.

    Zhang, Y. et al. Extended hot carrier lifetimes observed in bulk In0.265±0.02Ga0.735N under high-density photoexcitation. Appl. Phys. Lett. 108, 131904 (2016).

  21. 21.

    Tedeschi, D. et al. Long-lived hot carriers in III–V nanowires. Nano Lett. 16, 3085–3093 (2016).

  22. 22.

    Gibelli, F., Lombez, L. & Guillemoles, J.-F. Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations. J. Phys. Condens. Matter 29, 06LT02 (2017).

  23. 23.

    Esmaielpour, H. et al. Effect of occupation of the excited states and phonon broadening on the determination of the hot carrier temperature from continuous wave photoluminescence in InGaAsP quantum well absorbers. Prog. Photovolt. Res. Appl. 25, 782–790 (2017).

  24. 24.

    Dimmock, J. A. R., Day, S., Kauer, M., Smith, K. & Heffernan, J. Demonstration of a hot-carrier photovoltaic cell. Prog. Photovolt. Res. Appl. 22, 151–160 (2014).

  25. 25.

    Dimmock, J. A. R. et al. Optoelectronic characterization of carrier extraction in a hot carrier photovoltaic cell structure. J. Opt. 18, 074003 (2016).

  26. 26.

    Julian, A., Jehl, Z., Miyashita, N., Okada, Y. & Guillemoles, J. F. Insights on energy selective contacts for thermal energy harvesting using double resonant tunneling contacts and numerical modeling. Superlattices Microstruct. 100, 749–756 (2016).

  27. 27.

    Hanna, M. C., Zhenghao, L. & Nozik, A. J. Hot carrier solar cells. AIP Conf. Proc. 404, 309 (1997).

  28. 28.

    Rau, U. Superposition and reciprocity in the electroluminescence and photoluminescence of solar cells. IEEE J. Photovolt. 2, 169–172 (2012).

  29. 29.

    Lasher, G. & Stern, F. Spontaneous and stimulated recombination radiation in semiconductors. Phys. Rev. 133, A553–A563 (1964).

  30. 30.

    Gibelli, F., Lombez, L. & Guillemoles, J.-F. Two carrier temperatures non-equilibrium generalized Planck law for semiconductors. Phys. B Condens. Matter 498, 7–14 (2016).

  31. 31.

    Feng, Y. et al. Non-ideal energy selective contacts and their effect on the performance of a hot carrier solar cell with an indium nitride absorber. Appl. Phys. Lett. 100, 053502 (2012).

  32. 32.

    Würfel, P. The chemical potential of radiation. J. Phys. C Solid State Phys. 15, 3967–3985 (1982).

  33. 33.

    Tsui, E., Nelson, J., Barnham, K., Button, C. & Roberts, J. S. Determination of the quasi-Fermi-level separation in single-quantum-well p-i-n diodes. J. Appl. Phys. 80, 4599–4603 (1996).

  34. 34.

    Kluftinger, B., Barnham, K., Nelson, J., Foxon, T. & Cheng, T. Temperature-dependent study of the radiative losses in double-quantum well solar cells. Sol. Energy Mater. Sol. Cells 66, 501–509 (2001).

  35. 35.

    Nelson, J., Paxman, M., Barnham, K. W. J., Roberts, J. S. & Button, C. Steady-state carrier escape from single quantum wells. IEEE J. Quantum Electron. 29, 1460–1468 (1993).

  36. 36.

    Chemla, D., Miller, D., Smith, P., Gossard, A. & Wiegmann, W. Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures. IEEE J. Quantum Electron. 20, 265–275 (1984).

  37. 37.

    Colocci, M., Gurioli, M. & Vinattieri, A. Thermal ionization of excitons in GaAs/AlGaAs quantum well structures. J. Appl. Phys. 68, 2809–2812 (1990).

  38. 38.

    Zitter, R. N. Saturated optical absorption through band filling in semiconductors. Appl. Phys. Lett. 14, 73–74 (1969).

Download references

Acknowledgements

This work was carried out in the framework of a project of the IPVF (Institut Photovoltaïque d’Île-de-France). This project has been supported by the French Government in the framework of the programme of investment for the future (Programme d’Investissement d’Avenir) ANR-IEED-002-0. The authors acknowledge J. Even for the energy band structure simulation, T. Batté and N. Chevalier for technical assistance on sample and device fabrication, and P. Schultz and J. Connolly for carefully reading the manuscript.

Author contributions

J.-F.G. and L.L. planned the study; D.-T.N. acquired the data; D.-T.N., L.L. and F.G. contributed to data treatment; S.B.-R., A.L.-C. and O.D. designed and fabricated the samples; D.-T.N., L.L. and J.-F.G. contributed to data analysis and modelling and wrote the paper.

Author information

Affiliations

  1. Institut Photovoltaique d’Ile de France (IPVF), Palaiseau, France

    • Dac-Trung Nguyen
    • , Laurent Lombez
    • , François Gibelli
    •  & Jean-François Guillemoles
  2. CNRS-Institut Photovoltaique d’Ile de France (IPVF), UMR 9006, Palaiseau, France

    • Laurent Lombez
    • , François Gibelli
    •  & Jean-François Guillemoles
  3. Univ Rennes, INSA Rennes, CNRS, Institut FOTON – UMR 6082, Rennes, France

    • Soline Boyer-Richard
    • , Alain Le Corre
    •  & Olivier Durand

Authors

  1. Search for Dac-Trung Nguyen in:

  2. Search for Laurent Lombez in:

  3. Search for François Gibelli in:

  4. Search for Soline Boyer-Richard in:

  5. Search for Alain Le Corre in:

  6. Search for Olivier Durand in:

  7. Search for Jean-François Guillemoles in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Laurent Lombez.

Supplementary information

  1. Supplementary Information

    Supplementary Notes 1–9, Supplementary Figures 1–11, Supplementary Table 1 and Supplementary References.