Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates

Abstract

Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendrite growth mechanisms, and in particular, Li-plating-induced internal stress in Li metal and its effect on Li growth morphology are not well addressed. Here, we reveal the enabling role of plating residual stress in dendrite formation through depositing Li on soft substrates and a stress-driven dendrite growth model. We show that dendrite growth is mitigated on such soft substrates through surface-wrinkling-induced stress relaxation in the deposited Li film. We demonstrate that this dendrite mitigation mechanism can be utilized synergistically with other existing approaches in the form of three-dimensional soft scaffolds for Li plating, which achieves higher coulombic efficiency and better capacity retention than that for conventional copper substrates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cu thin film wrinkling during Li plating and dendrite mitigation by using soft substrate.
Fig. 2: Optical microscope observation of Cu current collectors during and after Li plating.
Fig. 3: Profilometer observation of Cu current collectors during and after Li plating.
Fig. 4: Scanning electron microscopy observation of Li morphology after plating on soft and hard substrates.
Fig. 5: Stress-driven Li whisker growth model.
Fig. 6: Fabrication and comparison of 3D Cu@PDMS substrates.

Similar content being viewed by others

References

  1. Zhamu, A. et al. Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ. Sci. 5, 5701–5707 (2012).

    Article  Google Scholar 

  2. Safari, M., Adams, B. & Nazar, L. Kinetics of oxygen reduction in aprotic Li–O2 cells: a model-based study. J. Phys. Chem. Lett. 5, 3486–3491 (2014).

    Article  Google Scholar 

  3. Kim, S. et al. All-water-based electron-beam lithography using silk as a resist. Nat. Nanotech. 9, 306–310 (2014).

    Article  Google Scholar 

  4. Dong, S. et al. Insight into enhanced cycling performance of Li-O2 batteries based on binary CoSe2/CoO nanocomposite electrodes. J. Phys. Chem. Lett. 5, 615–621 (2014).

    Article  Google Scholar 

  5. Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    Article  Google Scholar 

  6. Hirai, T., Yoshimatsu, I. & Yamaki, J. i. Effect of additives on lithium cycling efficiency. J. Electrochem. Soc. 141, 2300–2305 (1994).

  7. Aurbach, D., Markovsky, B., Shechter, A., Ein-Eli, Y. & Cohen, H. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc. 143, 3809–3820 (1996).

    Article  Google Scholar 

  8. Aurbach, D. et al. Recent studies of the lithium-liquid electrolyte interface. Electrochemical, morphological and spectral studies of a few important systems. J. Power Sources 54, 76–84 (1995).

    Article  Google Scholar 

  9. Schechter, A., Aurbach, D. & Cohen, H. X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir 15, 3334–3342 (1999).

    Article  Google Scholar 

  10. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    Article  Google Scholar 

  11. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    Article  Google Scholar 

  12. Kim, K. H. et al. Characterization of the interface between LiCoO2 and Li7 La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power Sources 196, 764–767 (2011).

    Article  Google Scholar 

  13. Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B. & Tarascon, J.-M. Lithium metal stripping/plating mechanisms studies: A metallurgical approach. Electrochem. Commun. 8, 1639–1649 (2006).

    Article  Google Scholar 

  14. Mayers, M. Z., Kaminski, J. W. & Miller, T. F.III. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J. Phys. Chem. C 116, 26214–26221 (2012).

    Article  Google Scholar 

  15. Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014).

    Article  Google Scholar 

  16. Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618–623 (2014).

    Article  Google Scholar 

  17. Lee, H., Lee, D. J., Kim, Y.-J., Park, J.-K. & Kim, H.-T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 284, 103–108 (2015).

    Article  Google Scholar 

  18. Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

  19. Choudhury, S. et al. Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem. Int. Ed. 56, 13070–13077 (2017).

    Article  Google Scholar 

  20. Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article  Google Scholar 

  21. Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).

  22. Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626–632 2016).

    Article  Google Scholar 

  23. Lu, L.-L. et al. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 16, 4431–4437 (2016).

    Article  Google Scholar 

  24. Yang, C.-P., Yin, Y.-X., Zhang, S.-F., Li, N.-W. & Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).

  25. Yun, Q. et al. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28, 6932–6939 (2016).

    Article  Google Scholar 

  26. Guo, Y., Li, H. & Zhai, T. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 29, 1700007 (2017).

    Article  Google Scholar 

  27. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotech. 12, 194–206 (2017).

    Article  Google Scholar 

  28. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    Article  Google Scholar 

  29. Ahmad, Z. & Viswanathan, V. Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys. Rev. Lett. 119, 056003 (2017).

    Article  Google Scholar 

  30. Chason, E., Jadhav, N., Pei, F., Buchovecky, E. & Bower, A. Growth of whiskers from Sn surfaces: driving forces and growth mechanisms. Prog. Surf. Sci. 88, 103–131 (2013).

    Article  Google Scholar 

  31. Chason, E. et al. Understanding residual stress in electrodeposited Cu thin films. J. Electrochem. Soc. 160, D3285–D3289 (2013).

    Article  Google Scholar 

  32. Shin, J. W. & Chason, E. Compressive stress generation in Sn thin films and the role of grain boundary diffusion. Phys. Rev. Lett. 103, 056102 (2009).

    Article  Google Scholar 

  33. Li, W. Y. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).

  34. Qian, J. F. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  Google Scholar 

  35. Wang, Z., Volinsky, A. A. & Gallant, N. D. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polym. Sci. 131, 41050 (2014).

    Article  Google Scholar 

  36. James, A. M. & Lord, M. P. Macmillan’s Chemical and Physical Data (Macmillan, London, 1992).

  37. Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V. & Greer, J. R. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl Acad. Sci. USA 114, 57–61 (2017).

    Article  Google Scholar 

  38. Yamaki, J. et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74, 219–227 (1998).

    Article  Google Scholar 

  39. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article  Google Scholar 

  40. Steiger, J., Kramer, D. & Monig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 261, 112–119 (2014).

    Article  Google Scholar 

  41. Sand, H. J. S. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Philos. Mag. 1, 45–79 (1901).

    Article  MATH  Google Scholar 

  42. Kato, T., Handwerker, C. A. & Bath, J. Mitigating Tin Whisker Risks: Theory and Practice (John Wiley & Sons, Hoboken, NJ, 2016).

  43. Sarobol, P., Blendell, J. E. & Handwerker, C. A. Whisker and hillock growth via coupled localized Coble creep, grain boundary sliding, and shear induced grain boundary migration. Acta Mater. 61, 1991–2003 (2013).

    Article  Google Scholar 

  44. Abermann, R. & Koch, R. The internal-stress in thin silver, copper and gold-films. Thin Solid Films 129, 71–78 (1985).

    Article  Google Scholar 

  45. Spaepen, F. Interfaces and stresses in thin films. Acta Mater. 48, 31–42 (2000).

    Article  Google Scholar 

  46. Chason, E., Sheldon, B. W., Freund, L. B., Floro, J. A. & Hearne, S. J. Origin of compressive residual stress in polycrystalline thin films. Phys. Rev. Lett. 88, 156103 (2002).

    Article  Google Scholar 

  47. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).

    Article  Google Scholar 

  48. Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).

    Article  Google Scholar 

  49. Wieland, O. & Carstanjen, H. D. Measurement of the low-temperature self-diffusivity of lithium by elastic recoil detection analysis. Def. Diff. Forum 194–199, 35–41 (2001).

    Article  Google Scholar 

  50. Khang, D. Y., Jiang, H. Q., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).

    Article  Google Scholar 

  51. Huang, Z. Y., Hong, W. & Suo, Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53, 2101–2118 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  52. Song, J. et al. An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103, 014303 (2008).

    Article  Google Scholar 

  53. Yu, C. et al. Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation. Adv. Energy Mater. 2, 68–73 (2012).

    Article  Google Scholar 

  54. Jiang, H. et al. Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl Acad. Sci. USA 104, 15607–15612 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. L.H. F.W. and M.T. acknowledge support from the DOE BES Physical Behaviour of Materials Program under grant no. DE-SC0014435. The research also uses HPC resources supported in part by the Big-Data Private-Cloud Research Cyberinfrastructure MRI-award funded by the NSF under grant CNS-1338099 by Rice University. We appreciate the discussion with C. Chan at Arizona State University on the full-cell characterization.

Author information

Authors and Affiliations

Authors

Contributions

X.W., W.Z. and H.J. designed the experiments. X.W., W.Z., W.X., H.Y., F.W., H.D. and H.J. carried out experiments and analysis. L.H. and M.T. developed the theory. X.W., M.T. and H.J. wrote the paper.

Corresponding authors

Correspondence to Huigao Duan, Ming Tang or Hanqing Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–16, Supplementary Discussion, Supplementary References.

Videos

Supplementary Video 1

Optical observation of 200 nm-thick Cu/PDMS soft substrate during Li plating

Supplementary Video 2

Optical observation of 400 nm-thick Cu/PDMS soft substrate during Li plating

Supplementary Video 3

Optical observation of 800 nm-thick Cu/PDMS soft substrate during Li plating

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zeng, W., Hong, L. et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat Energy 3, 227–235 (2018). https://doi.org/10.1038/s41560-018-0104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0104-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing