Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks

Abstract

Thermoelectric energy conversion offers a unique solution for generating electricity from waste heat. However, despite recent improvements in the efficiency of thermoelectric materials, the widespread application of thermoelectric generators has been hampered by challenges in fabricating thermoelectric materials with appropriate dimensions to perfectly fit heat sources. Herein, we report an extrusion-based three-dimensional printing method to produce thermoelectric materials with geometries suitable for heat sources. All-inorganic viscoelastic inks were synthesized using Sb2Te3 chalcogenidometallate ions as inorganic binders for Bi2Te3-based particles. Three-dimensional printed materials with various geometries showed homogenous thermoelectric properties, and their dimensionless figure-of-merit values of 0.9 (p-type) and 0.6 (n-type) were comparable to the bulk values. Conformal cylindrical thermoelectric generators made of 3D-printed half rings mounted on an alumina pipe were studied both experimentally and computationally. Simulations show that the power output of the conformal, shape-optimized generator is higher than that of conventional planar generators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: All-inorganic TE inks and printing.
Fig. 2: Structural characterizations of the 3D-printed TE samples.
Fig. 3: TE properties of the 3D-printed samples.
Fig. 4: Conformal TEG with the 3D-printed n-type and p-type half rings.
Fig. 5: Comparative simulation study of the conformal and planar TEGs on an alumina pipe.
Fig. 6: Effect of geometric parameters on the conformal cylindrical TEG.

Similar content being viewed by others

References

  1. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    Article  Google Scholar 

  2. DiSalvo, F. J. Thermoelectric cooling and power generation. Science 285, 703–706 (1999).

    Article  Google Scholar 

  3. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  Google Scholar 

  4. LeBlanc, S. Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain. Mater. Technol 1–2, 26–35 (2014).

    Google Scholar 

  5. Bahk, J.-H., Fang, H., Yazawa, K. & Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 3, 10362–10374 (2015).

    Article  Google Scholar 

  6. Rowe, D. M. & Min, G. Design theory of thermoelectric modules for electrical power generation. IEE Proc. Sci. Meas. Technol. 143, 351–356 (1996).

    Article  Google Scholar 

  7. Kraemer, D. et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat. Energy 1, 16153 (2016).

    Article  Google Scholar 

  8. Deng, Y. D., Liu, X., Chen, S. & Tong, N. Q. Thermal optimization of the heat exchanger in an automotive exhaust-based thermoelectric generator. J. Electron. Mater. 42, 1634–1640 (2012).

    Article  Google Scholar 

  9. Jiang, J., Chen, L., Bai, S., Yao, Q. & Wang, Q. Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1−x crystals prepared via zone melting. J. Cryst. Growth 277, 258–263 (2005).

    Article  Google Scholar 

  10. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  Google Scholar 

  11. Jo, S. et al. Simultaneous improvement in electrical and thermal properties of interface-engineered BiSbTe nanostructured thermoelectric materials. J. Alloys Compd. 689, 899–907 (2016).

    Article  Google Scholar 

  12. Kim, S. I. et al. Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109–114 (2015).

    Article  Google Scholar 

  13. Ma, Y. et al. Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett. 8, 2580–2584 (2008).

    Article  Google Scholar 

  14. Son, J. S. et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 12, 640–647 (2012).

    Article  Google Scholar 

  15. Li, J. et al. BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties. Adv. Funct. Mater. 23, 4317–4323 (2013).

    Article  Google Scholar 

  16. Kim, S. J., We, J. H. & Cho, B. J. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7, 1959–1965 (2014).

    Article  Google Scholar 

  17. Kim, S. J. et al. Post ionized defect engineering of screen-printed Bi2Te2.7Se0.3 thick film for high performance flexible thermoelectric generator. Nano Energy 31, 258–263 (2017).

    Article  Google Scholar 

  18. We, J. H., Kim, S. J. & Cho, B. J. Hybrid composite of screen printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator. Energy 73, 506–512 (2014).

    Article  Google Scholar 

  19. Varghese, T. et al. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals. Sci. Rep. 6, 33135 (2016).

    Article  Google Scholar 

  20. Navone, C., Soulier, M., Plissonnier, M. & Seiler, A. L. Development of (Bi,Sb)2(Te,Se)3-based thermoelectric modules by a screen-printing process. J. Electron. Mater. 39, 1755–1759 (2010).

    Article  Google Scholar 

  21. Lewis, J. A. & Ahn, B. Y. Device fabrication: three-dimensional printed electronics. Nature 518, 42–43 (2015).

    Article  Google Scholar 

  22. Sun, K. et al. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25, 4539–4543 (2013).

    Article  Google Scholar 

  23. Faes, M., Valkenaers, H., Vogeler, F., Vleugels, J. & Ferraris, E. Extrusion-based 3D printing of ceramic components. Procedia CIRP 28, 76–81 (2015).

    Article  Google Scholar 

  24. Zhu, C. et al. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015).

    Article  Google Scholar 

  25. Du, Y., Shen, S. Z., Cai, K. & Casey, P. S. Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog. Polym. Sci. 37, 820–841 (2012).

    Article  Google Scholar 

  26. Zhang, B., Sun, J., Katz, H. E., Fang, F. & Opila, R. L. Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites. ACS Appl. Mater. Interfaces 2, 3170–3178 (2010).

    Article  Google Scholar 

  27. Bae, E. J., Kang, Y. H., Jang, K. S. & Cho, S. Y. Enhancement of thermoelectric properties of PEDOT:PSS and tellurium-PEDOT:PSS hybrid composites by simple chemical treatment. Sci. Rep 6, 18805 (2016).

    Article  Google Scholar 

  28. Bae, E. J., Kang, Y. H., Jang, K. S., Lee, C. & Cho, S. Y. Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators. Nanoscale 8, 10885–10890 (2016).

    Article  Google Scholar 

  29. Mun, H., Choi, S. M., Lee, K. H. & Kim, S. W. Boundary engineering for the thermoelectric performance of bulk alloys based on bismuth telluride. ChemSusChem 8, 2312–2326 (2015).

    Article  Google Scholar 

  30. Hyun, D.-B., Hwang, J.-S., Shim, J.-D. & Oh, T. S. Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method. J. Mater. Sci. 36, 1285–1291 (2001).

    Article  Google Scholar 

  31. Yan, X. et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett. 10, 3373–3378 (2010).

    Article  Google Scholar 

  32. Kovalenko, M. V. et al. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. J. Am. Chem. Soc. 132, 6686–6695 (2010).

    Article  Google Scholar 

  33. Dolzhnikov, D. S. et al. Composition-matched molecular “solders” for semiconductors. Science 347, 425–428 (2015).

    Article  Google Scholar 

  34. Son, J. S. et al. All-inorganic nanocrystals as a glue for BiSbTe grains: design of interfaces in mesostructured thermoelectric materials. Angew. Chem. Int. Ed. 53, 7466–7470 (2014).

    Article  Google Scholar 

  35. Nag, A. et al. Effect of metal ions on photoluminescence, charge transport, magnetic and catalytic properties of all-inorganic colloidal nanocrystals and nanocrystal solids. J. Am. Chem. Soc. 134, 13604–13615 (2012).

    Article  Google Scholar 

  36. Liu, W., Lee, J. S. & Talapin, D. V. III–V nanocrystals capped with molecular metal chalcogenide ligands: high electron mobility and ambipolar photoresponse. J. Am. Chem. Soc 135, 1349–1357 (2013).

    Article  Google Scholar 

  37. Park, S. H. et al. High-performance shape-engineerable thermoelectric painting. Nat. Commun. 7, 13403 (2016).

    Article  Google Scholar 

  38. Tsng, W. J. & Wu, C. H. Sedimentation, rheology and particle-packing structure of aqueous Al2O3 suspensions. Ceram. Int. 29, 821–828 (2003).

    Article  Google Scholar 

  39. Mewis, J. & Wagner, N. J. Colloidal Suspension Rheology (Cambridge Univ. Press, New York, 2012).

  40. Eom, Y., Jung, D. E., Hwang, S. S. & Kim, B. C. Characteristic dynamic rheological responses of nematic poly(p-phenylene terephthalamide) and cholesteric hydroxypropyl cellulose phases. Polym. J. 48, 869–874 (2016).

    Article  Google Scholar 

  41. Kim, B.-J. et al. Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon 77, 747–755 (2014).

    Article  Google Scholar 

  42. Seitz, H., Rieder, W., Irsen, S., Leukers, B. & Tille, C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 74, 782–788 (2005).

    Article  Google Scholar 

  43. Seitz, H., Deisinger, U., Leukers, B., Detsch, R. & Ziegler, G. Different calcium phosphate granules for 3-D printing of bone tissue engineering scaffolds. Adv. Eng. Mater. 11, B41–B46 (2009).

    Article  Google Scholar 

  44. Schmitz, A., Stiewe, C. & Müller, E. Preparation of ring-shaped thermoelectric legs from PbTe powders for tubular thermoelectric modules. J. Electron. Mater. 42, 1702–1706 (2013).

    Article  Google Scholar 

  45. Hori, Y. & Kusano, D. Effects of PbTe doping on the thermoelectric properties of (Bi2Te3)0.2(Sb2Te3)0.8. In Twenty-first International Conference on Thermoelectrics, 2002. Proceedings ICT '02 13–16 (IEEE, 2002).

  46. He, M. et al. 3D printing fabrication of amorphous thermoelectric materials with ultralow thermal conductivity. Small 11, 5889–5894 (2015).

    Article  Google Scholar 

  47. Kim, S. J. et al. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 10, 10851–10857 (2016).

    Article  Google Scholar 

  48. Suganuma, K. & Jiu, J. Advanced Bonding Technology Based on Nano- and Micro-metal Pastes in Materials for Advanced Packaging, 2nd edn (eds Lu, D. & Wong, C. P.) 589–626 (Springer, Cham, 2017).

  49. Xue-Dong, L. & Park, Y.-H. Structure and transport properties of (Bi1−xSbx)2Te3 thermoelectric materials prepared by mechanical alloying and pulse discharge sintering. Mater. Trans. 43, 681–687 (2002).

    Article  Google Scholar 

  50. Liu, W. et al. Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion. Energy Environ. Sci. 6, 552–560 (2013).

    Article  Google Scholar 

  51. Gorbachuk, N. P., Bolgar, A. S., Sidorko, V. R. & Goncharuk, L. V. Heat capacity and enthalpy of Bi2Si3 and Bi2Te3 in the temperature range 58–1012 K. Powder Metall. Metal. Ceram. 43, 284–290 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the R&D Convergence Program of National Research Council of Science and Technology (NST) of Republic of Korea, and the Center for Advanced Meta-Materials (CAMM) as a Global Frontier Project (NRF-2016M3A6B3936652), Leading Foreign Research Institute Recruitment Program (No. 2017K1A4A3015437), the Nano Material Technology Development Program (No. 2016M3A7B4900044), and individual research program (NRF-2016R1A2B4007452) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) of Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

F.K., B.K. and J.S.S. designed the experiments, analysed the data and wrote the paper. F.K., S.P., S.J., T.S.M., K.T.K. and S.H.P. carried out the synthesis and basic characterization of the materials. Y. E. and H.G.C. performed the characterization of the rheological properties. F.K., J.E.L., B.-S.K., H.J.I., M.H.L. and J.S.S. carried out the fabrication and measurement of the TEGs. B.K. and W.P.K. performed the simulation studies of the TEGs. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jae Sung Son.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–12, Supplementary Tables 1–2, Supplementary Discussion and Supplementary References

Videos

Supplementary Video 1

Extrusion-based 3D printing of a thermoelectric cuboid

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, F., Kwon, B., Eom, Y. et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat Energy 3, 301–309 (2018). https://doi.org/10.1038/s41560-017-0071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-017-0071-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing