Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells

Published online:


Organic–inorganic lead halide perovskites have shown photovoltaic performances above 20% in a range of solar cell architectures while offering simple and low-cost processability. Despite the multiple ionic compositions that have been reported so far, the presence of organic constituents is an essential element in all of the high-efficiency formulations, with the methylammonium and formamidinium cations being the sole efficient options available to date. In this study, we demonstrate improved material stability after the incorporation of a large organic cation, guanidinium, into the MAPbI3 crystal structure, which delivers average power conversion efficiencies over 19%, and stabilized performance for 1,000 h under continuous light illumination, a fundamental step within the perovskite field.

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

  2. 2.

    Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

  3. 3.

    Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

  4. 4.

    Shi, D. et al. Low trap-state density and long carrier diffusion in organo lead trihalide perovskite single crystals. Science 347, 519–522 (2015).

  5. 5.

    Yang., W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

  6. 6.

    Zhang, Y. et al. Optimization of stable quasi-cubic FAxMA1-xPbI3 perovskite structure for solar cells with efficiency beyond 20%. ACS Energy Lett. 2, 802–806 (2017).

  7. 7.

    Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).

  8. 8.

    Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

  9. 9.

    Gratia, P. et al. Intrinsic halide segregation at nanometer scale determines the high efficiency of mixed cation/mixed halide perovskite solar cells. J. Am. Chem. Soc. 138, 15821–15824 (2016).

  10. 10.

    Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

  11. 11.

    Li, X. et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7, 703–711 (2015).

  12. 12.

    You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotech. 11, 75–81 (2016).

  13. 13.

    Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015).

  14. 14.

    Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

  15. 15.

    Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

  16. 16.

    Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

  17. 17.

    Kieslich, G., Sun, S. & Cheetham, A. K. Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem. Sci. 5, 4712–4715 (2014).

  18. 18.

    Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926).

  19. 19.

    Szafrański, M. Investigation of phase instabilities in guanidinium halogenoplumbates(II). Thermochim. Acta 307, 177–183 (1997).

  20. 20.

    Szafrański, M. & Katrusiak, A. Phase transitions in the layered structure of diguanidinium tetraiodoplumbate. Phys. Rev. B 61, 1026–1035 (2000).

  21. 21.

    Jodlowski, A. D., Yépez, A., Luque, R., Camacho, L. & de Miguel, G. Benign-by-design solventless mechanochemical synthesis of three-, two-, and one-dimensional hybrid perovskites. Angew. Chem. 55, 14972–14977 (2016).

  22. 22.

    Huang, J., Xu, P., Liu, J. & You, X.-Z. C. Sequential introduction of cations deriving large-grain CsxFA1−xPbI3 thin film for planar hybrid solar cells: insight into phase-segregation and thermal-healing behavior. Small 13, 1603225 (2016).

  23. 23.

    Gholipour, S. et al. Globularity-selected large molecules for a new generation of multication perovskites. Adv. Mater. 29, 1702005 (2017).

  24. 24.

    Marco, N. D. et al. Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells. Nano Lett. 16, 1009–1016 (2016).

  25. 25.

    Buin, A., Comin, R., Xu, J., Ip, A. H. & Sargent, E. H. Halide-dependent electronic structure of organolead perovskite materials. Chem. Mater. 27, 4405–4412 (2015).

  26. 26.

    Nagabhushana, G. P., Shivaramaiah, R. & Navrotsky, A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proc. Natl Acad. Sci. USA 113, 7717–7721 (2016).

  27. 27.

    Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).

  28. 28.

    Lee, J. H., Lee, J.-H., Kong, E.-H. & Jang, H. M. The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3. Sci. Rep. 6, 21687 (2016).

  29. 29.

    Zu, F.-S. et al. Impact of white light illumination on the electronic and chemical structures of mixed halide and single crystal perovskites. Adv. Opt. Mater. 5, 1700139 (2017).

  30. 30.

    Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016).

  31. 31.

    Draguta, S. et al. Spatially non-uniform trap state densities in solution-processed hybrid perovskite thin films. J. Phys. Chem. Lett. 7, 715–721 (2016).

  32. 32.

    Grancini, G. et al. The impact of the crystallization processes on the structural and optical properties of hybrid perovskite films for photovoltaics. J. Phys. Chem. Lett. 5, 3836–3842 (2014).

  33. 33.

    Quarti, C. et al. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279–284 (2014).

  34. 34.

    Grancini, G. et al. CH3NH3PbI3 perovskite single crystals: surface photophysics and their interaction with the environment. Chem. Sci. 6, 7305–7310 (2015).

  35. 35.

    Preda, N. et al. Raman and photoluminescence studies on intercalated lead iodide with pyridine and iodine. J. Optoelectron. Adv. Mater. 10, 319–322 (2008).

  36. 36.

    Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

  37. 37.

    Wyckoff, R. W. G. Crystal Structures 2nd edn, Vol. 1 239–444 (John Wiley, New York, 1963).

  38. 38.

    Szafranski, M. & Jarek, M. Origin of spontaneous polarization and reconstructive phase transition in guanidinium iodide. CrystEngComm 15, 4617–4623 (2013).

  39. 39.

    Yamamuro, O. et al. Neutron diffraction and calorimetric studies of methylammonium iodide. Acta Cryst. B48, 329–336 (1992).

  40. 40.

    Ishida, H. et al. EXAFS study on the phase-transition (phase-α′-δ) in CH3NH3I. Z. Naturforsch. A 50, 876–880 (1995).

  41. 41.

    Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

  42. 42.

    Motta, C. et al. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat. Commun. 6, 7026–7033 (2015).

  43. 43.

    Ong, K. P., Goh, T. W., Xu, Q. & Huan, A. Structural evolution in methylammonium lead iodide CH3NH3PbI3. J. Phys. Chem. A 119, 11033–11038 (2015).

  44. 44.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  45. 45.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

  46. 46.

    Lv, H., Gao, H., Yang, Y. & Liu, L. Density functional theory (DFT) investigation on the structure and electronic properties of the cubic perovskite PbTiO3. Appl. Catal. A 404, 54–58 (2011).

Download references


We thank the European Commission H2020-ICT-2014-1, SOLEDLIGHT project, grant agreement no. 643791, the Swiss State Secretariat for Education, Research and Innovation (SERI) and Toyota Motor Europe Technical Center, Advanced Technology division, Home Wei 33, B-1930 Zaventem-Belgium for financial support. G.G. acknowledges the co-funded Marie Skłodowska Curie fellowship, H2020 grant agreement no. 665667, fund number 588072, and the SNSF Ambizione Energy grant SNF project PZENP2_173641. G.M. thanks the Ministry of Economy and Competitiveness for a ‘Ramón y Cajal’ contract (RYC-2013-12772). G.M. and L.C. acknowledge the Ministry of Economy and Competitiveness for financial support (CTQ2014-56422-P). A.D.J. thanks COST-STSM-MP1307 for financial support. Work in Berlin was supported by the SFB951 (DFG). We thank E. Oveisi and E. Baudat for the helpful discussions, L. Wen for his support during the XPS measurement and M. Tschumi for providing the instrument required for the stability measurements.

Author information


  1. Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland

    • Alexander D. Jodlowski
    • , Cristina Roldán-Carmona
    • , Giulia Grancini
    • , Manuel Salado
    •  & Mohammad Khaja Nazeeruddin
  2. Departamento de Química Física y Termodinámica Aplicada, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUQFN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba, Spain

    • Alexander D. Jodlowski
    • , Luis Camacho
    •  & Gustavo de Miguel
  3. Abengoa Research, Abengoa, C/ Energía Solar no. 1, Campus Palmas Altas, Sevilla, Spain

    • Manuel Salado
    •  & Shahzada Ahmad
  4. Humboldt-Universität zu Berlin, Institut für Physik & IRIS Adlershof, Berlin, Germany

    • Maryline Ralaiarisoa
    •  & Norbert Koch
  5. Helmholtz-Zentrum Berlin für Materialien und Energie, Devision Renewable Energies, Berlin, Germany

    • Maryline Ralaiarisoa
    •  & Norbert Koch


  1. Search for Alexander D. Jodlowski in:

  2. Search for Cristina Roldán-Carmona in:

  3. Search for Giulia Grancini in:

  4. Search for Manuel Salado in:

  5. Search for Maryline Ralaiarisoa in:

  6. Search for Shahzada Ahmad in:

  7. Search for Norbert Koch in:

  8. Search for Luis Camacho in:

  9. Search for Gustavo de Miguel in:

  10. Search for Mohammad Khaja Nazeeruddin in:


A.D.J. planned the experiments and prepared and characterized the cells; M.S. performed the impedance measurements and analysis; S.A. supervised M.S.; G.M. performed the XPS, XRD and absorption analysis; G.G. carried out the Raman and PL characterization; C.R.-C. designed the experiments, carried out the SEM analysis and wrote the manuscript; L.C. performed the theoretical simulations; M.R. and N.K. performed UPS and XPS analysis; C.R.-C., G.M., L.C. and M.K.N. conceived the idea, and supervised the research project.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Cristina Roldán-Carmona or Gustavo de Miguel or Mohammad Khaja Nazeeruddin.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–14, Supplementary Tables 1–2, Supplementary Notes 1–2, Supplementary References.