Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces

Abstract

Heterogeneous electrochemical phenomena, such as (photo)electrochemical water splitting to generate hydrogen using semiconductors and/or electrocatalysts, are driven by the accumulated charge carriers and thus the interfacial electrochemical potential gradients that promote charge transfer. However, measurements of the “surface” electrochemical potential during operation are not generally possible using conventional electrochemical techniques, which measure/control the potential of a conducting electrode substrate. Here we show that the nanoscale conducting tip of an atomic force microscope cantilever can sense the surface electrochemical potential of electrocatalysts in operando. To demonstrate utility, we measure the potential-dependent and thickness-dependent electronic properties of cobalt (oxy)hydroxide phosphate (CoPi). We then show that CoPi, when deposited on illuminated haematite (α-Fe2O3) photoelectrodes, acts as both a hole collector and an oxygen evolution catalyst. We demonstrate the versatility of the technique by comparing surface potentials of CoPi-decorated planar and mesoporous haematite and discuss viability for broader application in the study of electrochemical phenomena.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AFM method to measure catalyst surface potential during (photo)electrochemical experiments.
Fig. 2: Surface potentials of CoPi on an ITO substrate.
Fig. 3: In operando PS-EC-AFM potential-step photoelectrochemical experiments.
Fig. 4: CoPi surface potential measurements at given current densities.

References

  1. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  Google Scholar 

  2. Sivula, K. & Van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15015 (2016).

    Article  Google Scholar 

  3. Zandi, O. & Hamann, T. W. The potential versus current state of water splitting with hematite. Phys. Chem. Chem. Phys. 17, 22485–22503 (2015).

    Article  Google Scholar 

  4. Sivula, K. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J. Phys. Chem. Lett. 4, 1624–1633 (2013).

    Article  Google Scholar 

  5. Cowan, A. J. & Durrant, J. R. Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chem. Soc. Rev. 42, 2281–2293 (2013).

    Article  Google Scholar 

  6. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

    Article  Google Scholar 

  7. Barroso, M. et al. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl Acad. Sci. USA 109, 15640–15645 (2012).

    Article  Google Scholar 

  8. Barroso, M. et al. The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 133, 14868–14871 (2011).

    Article  Google Scholar 

  9. Klahr, B. M., Gimenez, S., Fabregat-Santiago, F., Bisquert, J. & Hamann, T. W. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with ‘Co–Pi’-coated hematite electrodes. J. Am. Chem. Soc. 134, 16693–16700 (2012).

    Article  Google Scholar 

  10. Carroll, G. M., Zhong, D. K. & Gamelin, D. R. Mechanistic insights into solar water oxidation by cobalt-phosphate-modified α-Fe2O3 photoanodes. Energy Environ. Sci. 8, 577–584 (2015).

    Article  Google Scholar 

  11. Carroll, G. M. & Gamelin, D. R. Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe2O3 photoanodes. J. Mater. Chem. A 4, 2986–2994 (2016).

    Article  Google Scholar 

  12. Lin, F. & Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 13, 81–86 (2014).

    Article  Google Scholar 

  13. Nellist, M. R., Laskowski, F. A. L., Lin, F., Mills, T. J. & Boettcher, S. W. Semiconductor–electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting. Acc. Chem. Res. 49, 733–740 (2016).

    Article  Google Scholar 

  14. Lin, F., Bachman, B. F. & Boettcher, S. W. Impact of electrocatalyst activity and ion permeability on water-splitting photoanodes. J. Phys. Chem. Lett. 6, 2427–2433 (2015).

    Article  Google Scholar 

  15. Mills, T. J., Lin, F. & Boettcher, S. W. Theory and simulations of electrocatalyst-coated semiconductor electrodes for solar water splitting. Phys. Rev. Lett. 112, 148304 (2014).

    Article  Google Scholar 

  16. Laskowski, F. A. L., Nellist, M. R., Venkatkarthick, R. & Boettcher, S. W. Junction behavior of n-Si photoanodes protected by thin Ni elucidated from dual working electrode photoelectrochemistry. Energy Environ. Sci. 10, 570–579 (2017).

    Article  Google Scholar 

  17. Qiu, J. et al. Direct in situ measurement of charge transfer processes during photoelectrochemical water oxidation on catalyzed hematite. ACS Cent. Sci. 3, 1015–1025 (2017).

    Article  Google Scholar 

  18. Hurth, C., Li, C. & Bard, A. J. Direct probing of electrical double layers by scanning electrochemical potential microscopy. J. Phys. Chem. C 111, 4620–4627 (2007).

    Article  Google Scholar 

  19. Yoon, Y. et al. A nanometer potential probe for the measurement of electrochemical potential of solution. Electrochim. Acta 52, 4614–4621 (2007).

    Article  Google Scholar 

  20. Yoon, Y., Woo, D., Shin, T., Chung, T. D. & Kang, H. Real-space investigation of electrical double layers. Potential gradient measurement with a nanometer potential probe. J. Phys. Chem. C 115, 17384–17391 (2011).

    Article  Google Scholar 

  21. Woo, D., Yoo, J., Park, S., Jeon, I. C. & Kang, H. Direct probing into the electrochemical interface using a novel potential probe: Au(111) electrode/NaBF4 solution interface. Bull. Korean Chem. Soc. 25, 577–580 (2004).

    Article  Google Scholar 

  22. Baier, C. & Stimming, U. Imaging single enzyme molecules under in situ conditions. Angew. Chemie Int. Ed. 48, 5542–5544 (2009).

    Article  Google Scholar 

  23. Hamou, R. F., Biedermann, P. U., Erbe, A. & Rohwerder, M. Numerical analysis of Debye screening effect in electrode surface potential mapping by scanning electrochemical potential microscopy. Electrochem. Commun. 12, 1391–1394 (2010).

    Article  Google Scholar 

  24. Traunsteiner, C., Tu, K. & Kunze-Liebhauser, J. High-resolution imaging of the initial stages of oxidation of Cu(111) with scanning electrochemical potential microscopy. ChemElectroChem 2, 77–84 (2015).

    Article  Google Scholar 

  25. Domanski, A. L. et al. Kelvin probe force microscopy in nonpolar liquids. Langmuir 28, 13892–13899 (2012).

    Article  Google Scholar 

  26. Collins, L. et al. Probing charge screening dynamics and electrochemical processes at the solid–liquid interface with electrochemical force microscopy. Nat. Commun. 5, 3871 (2014).

    Google Scholar 

  27. Collins, L. et al. Kelvin probe force microscopy in liquid using electrochemical force microscopy. Beilstein J. Nanotechnol. 6, 201–214 (2015).

    Article  Google Scholar 

  28. Kobayashi, N., Asakawa, H. & Fukuma, T. Nanoscale potential measurements in liquid by frequency modulation atomic force microscopy. Rev. Sci. Instrum. 81, 123705 (2010).

    Article  Google Scholar 

  29. Kobayashi, N., Asakawa, H. & Fukuma, T. Dual frequency open-loop electric potential microscopy for local potential measurements in electrolyte solution with high ionic strength. Rev. Sci. Instrum. 83, 33709 (2012).

    Article  Google Scholar 

  30. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  Google Scholar 

  31. Lutterman, D. A., Surendranath, Y. & Nocera, D. G. A self-healing oxygen-evolving catalyst. J. Am. Chem. Soc. 131, 3838–3839 (2009).

    Article  Google Scholar 

  32. Huang, Z. et al. PeakForce scanning electrochemical microscopy with nanoelectrode probes. Microsc. Today 24, 18–25 (2016).

    Article  Google Scholar 

  33. Nellist, M. R. et al. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging. Nanotechnology 28, 95711 (2017).

    Article  Google Scholar 

  34. Costentin, C., Porter, T. R. & Savéant, J.-M. Conduction and reactivity in heterogeneous-molecular catalysis: new insights in water oxidation catalysis by phosphate cobalt oxide films. J. Am. Chem. Soc. 138, 5615–5622 (2016).

    Article  Google Scholar 

  35. Andrieux, C. P., Costentin, C., Di Giovanni, C., Savéant, J.-M. & Tard, C. Conductive mesoporous catalytic films. Current distortion and performance degradation by dual-phase ohmic drop effects. Analysis and remedies. J. Phys. Chem. C 120, 21263–21271 (2016).

    Article  Google Scholar 

  36. Burke, M. S., Kast, M. G., Trotochaud, L., Smith, A. M. & Boettcher, S. W. Cobalt–iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137, 3638–3648 (2015).

    Article  Google Scholar 

  37. Burke, M. S. et al. Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media. J. Phys. Chem. Lett. 6, 3737–3742 (2015).

    Article  Google Scholar 

  38. Klingan, K. et al. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases. ChemSusChem 7, 1301–1310 (2014).

    Article  Google Scholar 

  39. Jörissen, L. Bifunctional oxygen/air electrodes. J. Power Sources 155, 23–32 (2006).

    Article  Google Scholar 

  40. Doyle, R. L. & Lyons, M. E. G. An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Phys. Chem. Chem. Phys. 15, 5224–5237 (2013).

    Article  Google Scholar 

  41. Batchellor, A. S. & Boettcher, S. W. Pulse-electrodeposited Ni–Fe (oxy)hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings. ACS Catal. 5, 6680–6689 (2015).

    Article  Google Scholar 

  42. Klahr, B. M., Martinson, A. B. F. & Hamann, T. W. Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27, 461–468 (2011).

    Article  Google Scholar 

  43. Tilley, S. D., Cornuz, M., Sivula, K. & Grätzel, M. Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chemie Int. Ed. 49, 6405–6408 (2010).

    Article  Google Scholar 

  44. Kay, A., Cesar, I. & Grätzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006).

    Article  Google Scholar 

  45. Ma, Y., Kafizas, A., Pendlebury, S. R., Le Formal, F. & Durrant, J. R. Photoinduced absorption spectroscopy of CoPi on BiVO4: the function of CoPi during water oxidation. Adv. Funct. Mater. 26, 4951–4960 (2016).

    Article  Google Scholar 

  46. Ma, Y., Le Formal, F., Kafizas, A., Pendlebury, S. R. & Durrant, J. R. Efficient suppression of back electron/hole recombination in cobalt phosphate surface-modified undoped bismuth vanadate photoanodes. J. Mater. Chem. A 3, 20649–20657 (2015).

    Article  Google Scholar 

  47. Kennedy, J. H. & Frese, K. W. Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125, 709–714 (1978).

    Article  Google Scholar 

  48. Zandi, O., Schon, A. R., Hajibabaei, H. & Hamann, T. W. Enhanced charge separation and collection in high-performance electrodeposited hematite films. Chem. Mater. 28, 765–771 (2016).

    Article  Google Scholar 

  49. Honbo, K. et al. Visualizing nanoscale distribution of corrosion cells by open-loop electric potential microscopy. ACS Nano 10, 2575–2583 (2016).

    Article  Google Scholar 

  50. Klahr, B. M., Gimenez, S., Fabregat-Santiago, F., Hamann, T. W. & Bisquert, J. Water oxidation at hematite photoelectrodes: the role of surface states. J. Am. Chem. Soc. 134, 4294–4302 (2012).

    Article  Google Scholar 

  51. Zandi, O. & Hamann, T. W. Enhanced water splitting efficiency through selective surface state removal. J. Phys. Chem. Lett. 5, 1522–1526 (2014).

    Article  Google Scholar 

  52. Dezelah, C. L., Niinistö, J., Arstila, K., Niinistö, L. & Winter, C. H. Atomic layer deposition of Ga2O3 films from a dialkylamido-based precursor. Chem. Mater. 18, 471–475 (2006).

    Article  Google Scholar 

  53. Surendranath, Y., Kanan, M. W. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    Article  Google Scholar 

  54. Risch, M. et al. Cobalt–oxo core of a water-oxidizing catalyst film. J. Am. Chem. Soc. 131, 6936–6937 (2009).

    Article  Google Scholar 

  55. Kanan, M. W. et al. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692–13701 (2010).

    Article  Google Scholar 

  56. Surendranath, Y., Dinca, M. & Nocera, D. G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 131, 2615–2620 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy, Basic Energy Sciences, Award DE-SC0014279. S.W.B also thanks the Sloan and Dreyfus Foundations for additional support. The atomic force microscope was purchased using funds provided by the NSF Major Research Instrumentation Program, Grant DMR-1532225. The growth of the planar haematite electrodes was supported by NSF Award CHE-1664823. F.A.L.L. acknowledges funding from the NSF GRFP, Grant 1309047. We thank Dr Fuding Lin, Dr Michaela B. Stevens, Dr Matthew G. Kast, Dr Sebastian Oener and Lisa J. Enman for helpful conversations, Dr Christian Dette for assistance in preparing figures, Dr Zhuangqun Huang for technical assistance with the AFM and John Boosinger for help designing the electrochemistry cell.

Author information

Authors and Affiliations

Authors

Contributions

M.R.N. and S.W.B. conceived the experiments and led the project. M.R.N. conducted the in operando studies; M.R.N. and F.A.L.L. prepared (photo)electrodes. H.H. and T.W.H. supplied planar haematite samples and K.S. provided mesostructured haematite samples. M.R.N., J.Q. and S.W.B. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Shannon W. Boettcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figures 1–15 and Supplementary References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nellist, M.R., Laskowski, F.A.L., Qiu, J. et al. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. Nat Energy 3, 46–52 (2018). https://doi.org/10.1038/s41560-017-0048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-017-0048-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing