Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries


Enabling the reversible lithium metal electrode is essential for surpassing the energy content of today’s lithium-ion cells. Although lithium metal cells for niche applications have been developed already, efforts are underway to create rechargeable lithium metal batteries that can significantly advance vehicle electrification and grid energy storage. In this Perspective, we focus on three tasks to guide and further advance the reversible lithium metal electrode. First, we summarize the state of research and commercial efforts in terms of four key performance parameters, and identify additional performance parameters of interest. We then advocate for the use of limited lithium (≤30 μm) to ensure early identification of technical challenges associated with stable and dendrite-free cycling and a more rapid transition to commercially relevant designs. Finally, we provide a cost target and outline material costs and manufacturing methods that could allow lithium metal cells to reach 100 US$ kWh–1.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Repeat layers of Li-ion and lithium metal cells.
Fig. 2: Status of published efforts on the cycling of lithium metal.
Fig. 3: Cost analysis for lithium metal batteries.


  1. 1.

    Pillot, C. Battery Market Development for Consumer Electronics, Automotive, and Industrial (2014).

  2. 2.

    Ryan, J. China is about to bury Elon Musk in batteries. Bloomberg (28 June 2017).

  3. 3.

    Schmidt, O., Hawkes, A., Gambhir, A. & Staffell, I. The future cost of electrical energy storage based on experience rates. Nat. Energy 6, 17110 (2017).

    Article  Google Scholar 

  4. 4.

    Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015).

    Article  Google Scholar 

  5. 5.

    USABC Goals for Advanced Batteries for EVs — CY 2020 Commercialization (USABC, 2017).

  6. 6.

    Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  Google Scholar 

  7. 7.

    Thackeray, M. M., Wolverton, C. & Isaacs, E. D. Electrical energy storage for transportation — approaching the limits of, and going beyond, lithium-ion batteries. Energ. Environ. Sci. 5, 7854–7863 (2012).

    Article  Google Scholar 

  8. 8.

    Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  Google Scholar 

  9. 9.

    Christensen, J. et al. A critical review of Li/air batteries. J. Electrochem. Soc. 159, R1–R30 (2012).

    Article  Google Scholar 

  10. 10.

    Albertus, P., Lohmann, T. & Christensen, J. in The Li–Air Battery: Fundamentals (eds Imanishi, N., Luntz, A. C. & Bruce, P.) 291–310 (Springer, 2014).

  11. 11.

    McCloskey, B. D. Attainable gravimetric and volumetric energy density of Li–S and Li ion battery cells with solid separator-protected Li metal anodes. J. Phys. Chem. Lett. 6, 4581–4588 (2015).

    Article  Google Scholar 

  12. 12.

    Gallagher, K. G. et al. Quantifying the promise of lithium–air batteries for electric vehicles. Energ. Environ. Sci. 7, 1555–1563 (2014).

    Article  Google Scholar 

  13. 13.

    Mayer, S. W. & McKenzie, D. E. Lightweight secondary battery. US patent 3(185), 590 (1965).

    Google Scholar 

  14. 14.

    Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    Article  Google Scholar 

  15. 15.

    Tobias, C. W. & Jorne, J. Method of production of alkali metals and their alloys. US Patent US3791945 A (1974).

    Google Scholar 

  16. 16.

    Hughes, M., Hampson, N. & Karunathilaka, S. A review of cells based on lithium negative electrodes (anodes). J. Power Sources 12, 83–144 (1984).

    Article  Google Scholar 

  17. 17.

    Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energ. Environ. Sci. 7, 513–537 (2014).

    Article  Google Scholar 

  18. 18.

    Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    Article  Google Scholar 

  19. 19.

    Takeda, Y., Yamamoto, O. & Imanishi, N. Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes. Electrochem 84, 210–218 (2016).

    Article  Google Scholar 

  20. 20.

    Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid State Ionics 135, 33–45 (2000).

    Article  Google Scholar 

  21. 21.

    Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993).

    Article  Google Scholar 

  22. 22.

    Hovington, P. et al. New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO4 versus nano Li1.2V3O8. Nano Lett. 15, 2671–2678 (2015).

    Article  Google Scholar 

  23. 23.

    Gross, J. & Eitouni, H. Drivers and technologies for Li-metal solid-state batteries. 16th Ann. Adv. Automot. Batt. Conf. (2016).

  24. 24.

    Monroe, C. & Newman, J. Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377–A1384 (2003).

    Article  Google Scholar 

  25. 25.

    Monroe, C. & Newman, J. The effect of interfacial deformation on electrodeposition kinetics. J. Electrochem. Soc. 151, A880–A886 (2004).

    Article  Google Scholar 

  26. 26.

    Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    Article  Google Scholar 

  27. 27.

    Tikekar, M. D., Archer, L. A. & Koch, D. L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, e1600320 (2016).

    Article  Google Scholar 

  28. 28.

    Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energ. Mater. (2017).

  29. 29.

    Aguesse, F. et al. Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl. Mater. Interf. 9, 3808–3816 (2017).

    Google Scholar 

  30. 30.

    Cheng, E. J., Sharafi, A. & Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta. 223, 85–91 (2017).

    Article  Google Scholar 

  31. 31.

    Park, M. S. et al. A highly reversible lithium metal anode. Sci. Rep. 4, 3815 (2014).

    Article  Google Scholar 

  32. 32.

    Tubandt, C. Handbuch der Experimentalphysik (Akad. Verlagsgesellschaft, Leipzig, 1932).

  33. 33.

    Reddy, T. Linden’s Handbook of Batteries (eds Reddy, T. & Linden, D.) (2011).

  34. 34.

    Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002).

    Article  Google Scholar 

  35. 35.

    Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).

    Article  Google Scholar 

  36. 36.

    Wang, C. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 17, 565–571 (2016).

    Article  Google Scholar 

  37. 37.

    Albertus, P. Integration and Optimization of Novel Ion-Conducting Solids (IONICS) Funding Opportunity Announcement (2016);

  38. 38.

    Hernandez-Maya, R., Rosas, O., Saunders, J. & Castaneda, H. Dynamic characterization of dendrite deposition and growth in Li-surface by electrochemical impedance spectroscopy. J. Electrochem. Soc. 162, A687–A696 (2015).

    Article  Google Scholar 

  39. 39.

    Sharafi, A., Meyer, H. M., Nanda, J., Wolfenstine, J. & Sakamoto, J. Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power Sources 302, 135–139 (2016).

    Article  Google Scholar 

  40. 40.

    Aurbach, D., Gofer, Y. & Langzam, J. The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136, 3198–3205 (1989).

    Article  Google Scholar 

  41. 41.

    Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).

    Article  Google Scholar 

  42. 42.

    Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  Google Scholar 

  43. 43.

    Tu, Z. et al. Nanoporous hybrid electrolytes for high‐energy batteries based on reactive metal anodes. Adv. Energ. Mater. 7, 1602367 (2017).

  44. 44.

    Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  Google Scholar 

  45. 45.

    Neudecker, B., Dudney, N. & Bates, J. ‘Lithium‐free’ thin‐film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517–523 (2000).

    Article  Google Scholar 

  46. 46.

    Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    Article  Google Scholar 

  47. 47.

    Bron, P. et al. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).

    Article  Google Scholar 

  48. 48.

    Guo, J. et al. Cold sintering: a paradigm shift for processing and integration of ceramics. Angew. Chem. 128, 11629–11633 (2016).

    Article  Google Scholar 

  49. 49.

    Guo, J. et al. Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials. Adv. Func. Mater. 26, 7115–7121 (2016).

    Article  Google Scholar 

Download references


The authors thank N. Dudney, S. Visco, L. Archer, K. Xu, T. Holme and P. Frischmann for helpful discussions.

Author information




P.A. conceived the figures, conducted the majority of the analysis and wrote most of the paper. S.B. and S.L. made significant contributions to the analysis and editing of the paper. A.N. contributed analysis and edited the paper.

Corresponding author

Correspondence to Paul Albertus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Dataset

Supplementary Table 1–4, Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Albertus, P., Babinec, S., Litzelman, S. et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat Energy 3, 16–21 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing