Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

Abstract

Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water–gas shift, product separation and compression. Here we present a protonic membrane reformer (PMR) that produces high-purity hydrogen from steam methane reforming in a single-stage process with near-zero energy loss. We use a BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni composite electrode with dual function as a reforming catalyst. At 800 °C, we achieve full methane conversion by removing 99% of the formed hydrogen, which is simultaneously compressed electrochemically up to 50 bar. A thermally balanced operation regime is achieved by coupling several thermo-chemical processes. Modelling of a small-scale (10 kg H2 day−1) hydrogen plant reveals an overall energy efficiency of >87%. The results suggest that future declining electricity prices could make PMRs a competitive alternative for industrial-scale hydrogen plants integrating CO2 capture.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the protonic membrane reformer.
Fig. 2: Protonic membrane reformer for production of compressed hydrogen.
Fig. 3: Breakdown of voltage losses and microthermal integration at 800 °C.
Fig. 4: Thermo-fluid dynamic simulations.
Fig. 5: Techno-economic evaluation of centralized hydrogen production plant.
Fig. 6: Techno-economic evaluation of distributed hydrogen production.

Similar content being viewed by others

References

  1. Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

    Article  Google Scholar 

  2. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  Google Scholar 

  3. Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

    Article  Google Scholar 

  4. Rostrup-Nielsen, J. R. Catalysis and large-scale conversion of natural gas. Catal. Today 21, 257–267 (1994).

    Article  Google Scholar 

  5. Voss, C. Applications of pressure swing adsorption technology. Adsorption 11, 527–529 (2005).

    Article  Google Scholar 

  6. Gallucci, F., Fernandez, E., Corengia, P. & van Sint Annaland, M. Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92, 40–66 (2013).

    Article  Google Scholar 

  7. Boeltken, T., Wunsch, A., Gietzelt, T., Pfeifer, P. & Dittmeyer, R. Ultra-compact microstructured methane steam reformer with integrated Palladium membrane for on-site production of pure hydrogen: Experimental demonstration. Int. J. Hydrogen Energy 39, 18058–18068 (2014).

    Article  Google Scholar 

  8. Al-Mufachi, N. A., Rees, N. V. & Steinberger-Wilkens, R. Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renew. Sustainable Energy Rev. 47, 540–551 (2015).

    Article  Google Scholar 

  9. Sengodan, S. et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015).

    Article  Google Scholar 

  10. Myung, J.-h, Neagu, D., Miller, D. N. & Irvine, J. T. S. Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016).

    Article  Google Scholar 

  11. Iwahara, H., Uchida, H., Ono, K. & Ogaki, K. Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 135, 529–533 (1988).

    Article  Google Scholar 

  12. Hamakawa, S., Hibino, T. & Iwahara, H. Electrochemical methane coupling using proton conductors. J. Electrochem. Soc. 140, 459–462 (1993).

    Article  Google Scholar 

  13. Bonanos, N., Knight, K. S. & Ellis, B. Perovskite solid electrolytes: structure, transport properties and fuel cell applications. Solid State Ion. 79, 161–170 (1995).

    Article  Google Scholar 

  14. Norby, T. Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ion. 125, 1–11 (1999).

    Article  Google Scholar 

  15. Kreuer, K. D. On the development of proton conducting materials for technological applications. Solid State Ion. 97, 1–15 (1997).

    Article  Google Scholar 

  16. Kreuer, K. D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ion. 125, 285–302 (1999).

    Article  Google Scholar 

  17. Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003).

    Article  Google Scholar 

  18. Tao, S. W. & Irvine, J. T. S. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv. Mater. 18, 11581-1584 (2006).

    Article  Google Scholar 

  19. Wang, H., Peng, R., Wu, X., Hu, J. & Xia, C. Sintering behavior and conductivity study of yttrium-doped BaCeO3–BaZrO3 solid solutions using ZnO additives. J. Am. Ceram. Soc. 92, 2623–2629 (2009).

    Article  Google Scholar 

  20. Coors, W. G. in Advances in Ceramics—Synthesis and Characterization, Processing and Specific Applications (Ed. Sikalidis, C.) Ch. 22, 501–520 (InTech, UK, 2011) (2011).

  21. Manabe, R. et al. Surface protonics promotes catalysis. Sci. Rep. 6, 38007, (2016).

    Article  Google Scholar 

  22. Rohland, B., Eberle, K., Ströbel, R., Scholta, J. & Garche, J. Electrochemical hydrogen compressor. Electrochimica Acta 43, 3841–3846 (1998).

    Article  Google Scholar 

  23. Kochetova, N., Animitsa, I., Medvedev, D., Demin, A. & Tsiakaras, P. Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Adv. 6, 73222–73268 (2016).

    Article  Google Scholar 

  24. Yamazaki, Y. et al. Proton trapping in yttrium-doped barium zirconate. Nat. Mater. 12, 647–651 (2013).

    Article  Google Scholar 

  25. Kjølseth, C. et al. Space-charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3-δ . Solid State Ion. 181, 268–275 (2010).

    Article  Google Scholar 

  26. Coors, W. G A stoichiometric titration method for measuring galvanic hydrogen flux in ceramic hydrogen separation membranes. J. Membr. Sci. 458, 245–253 (2014).

    Article  Google Scholar 

  27. Zeppieri, M., Villa, P. L., Verdone, N., Scarsella, M. & De Filippis, P. Kinetic of methane steam reforming reaction over nickel- and rhodium-based catalysts. Appl. Catal. A 387, 147–154 (2010).

    Article  Google Scholar 

  28. Wang, B., Zhu, J. & Lin, Z. A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics. Appl. Energy 176, 1–11 (2016).

    Article  Google Scholar 

  29. Overview of Electricity Production and Use in Europe (European Environment Agency, 2016).

  30. Edwards, R., Larive, J.-F., Rickeard, D. & Weindorf, W. Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Well-to-Tank Report Version 4.a, JEC Well-to-Wheels Analysis (Joint Research Centre, 2014).

  31. Cho, V. H., Hamilton, B. A. & Kuehn, N. J. Assessment of Hydrogen Production with CO 2 Capture Volume 1: Baseline State-of-the-Art Plants (National Energy Technology Laboratory, 2010).

  32. Schjølberg, I. et al. Small-Scale Reformers for On-Site Hydrogen Supply (International Energy Agency-Hydrogen Implementing Agreement, 2012).

  33. de Visser, E. et al. Dynamis CO2 quality recommendations. Int. J. Greenhouse Gas Control 2, 478–484 (2008).

    Article  Google Scholar 

  34. Bertucciolo, L. et al. Development of Water Electrolysis in the European Union (Fuel Cells and Hydrogen Joint Undertaking, 2014).

  35. Edwards, R. et al. Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Well-to-Wheels Report Version 4.a, JEC Well-to-Wheels Analysis (Joint Research Centre 2014).

  36. Huss, A., Maas, H. & Hass, H. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Tank-to-Wheels Report Version 4.0, JEC Technical Reports (Joint Research Centre, 2013).

Download references

Acknowledgements

This work was supported by the Research Council of Norway (grant 256264) and the Spanish Government (SEV-2016-0683 grant). NORTEM is acknowledged for access to transmission electron microscopes.

Author contributions

H.M.-F., D.C., R.Z. and C.K. performed the experiments. H.M.-F., J.M.S., R.H., D.C., P.K.V., T.N. and C.K. designed the experiments. D.B. fabricated the tubular membrane electrode assembly. H.M.-F., C.K., R.H., T.N. and J.M.S. analysed electrochemical data. H.M.-F., J.M.S., S.H.M., R.Z. and C.K. analysed the catalytic data. I.Y.-T. and D.C.-M. designed and performed modelling studies. D.C. collected scanning and transmission electron microscope data. P.K.V. and C.K. initiated the project. H.M.-F., D.C., I.Y.-T., D.C.-M., D.B., S.H.M., P.K.V., T.N., R.H., J.M.S. and C.K. wrote the manuscript, while all authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José M. Serra or Christian Kjølseth.

Ethics declarations

Competing interests

H.M.-F., D.C., I.Y.-T, D.B., S.H.M., P.K.V. and C.K. are employed by CoorsTek Membrane Sciences (CTMS). T.N. is member of the CTMS board. D.C. postdoctoral research at University of Oslo is partially funded by CTMS. The other authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Methods, Supplementary Figures 1–15, Supplementary Tables 1–2 and Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malerød-Fjeld, H., Clark, D., Yuste-Tirados, I. et al. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nat Energy 2, 923–931 (2017). https://doi.org/10.1038/s41560-017-0029-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-017-0029-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing