Article | Published:

A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction

Nature Energyvolume 2pages877883 (2017) | Download Citation


The design of stable electrolyte materials with high proton conductivity for use in proton exchange membrane fuel cells remains a challenge. Most of the materials explored have good conductivity at high relative humidity (RH), but significantly decreased conductivity at reduced RH. Here we report a chemically stable and structurally flexible metal–organic framework (MOF), BUT-8(Cr)A, possessing a three-dimensional framework structure with one-dimensional channels, in which high-density sulfonic acid (–SO3H) sites arrange on channel surfaces for proton conduction. We propose that its flexible nature, together with its –SO3H sites, could allow BUT-8(Cr)A to self-adapt its framework under different humid environments to ensure smooth proton conduction pathways mediated by water molecules. Relative to other MOFs, BUT-8(Cr)A not only has a high proton conductivity of 1.27 × 10−1 S cm−1 at 100% RH and 80 °C but also maintains moderately high proton conductivity at a wide range of RH and temperature.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Section 1.0 (US DOE, 2016).

  2. 2.

    Barbir, F. PEM Fuel Cells: Theory and Practice. (Elsevier Academic Press, New York, 2005).

  3. 3.

    Mauritz, K. A. & Moore, R. B. State of understanding of Nafion. Chem. Rev. 104, 4535–4585 (2004).

  4. 4.

    Sone, Y., Ekdunge, P. & Simonsson, D. Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method. J. Electrochem. Soc. 143, 1254–1259 (1996).

  5. 5.

    Hickner, M. A. et al. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4611 (2004).

  6. 6.

    Sel, O. et al. Original fuel-cell membranes from crosslinked terpolymers via a “sol-gel” strategy. Adv. Funct. Mater. 20, 1090–1098 (2010).

  7. 7.

    Vichi, F. M., Tejedor-Tejedor, M. I. & Anderson, M. A. Effect of pore-wall chemistry on proton conductivity in mesoporous titanium dioxide. Chem. Mater. 12, 1762–1770 (2000).

  8. 8.

    Karim, M. R. et al. Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 135, 8097–8100 (2013).

  9. 9.

    Di Vona, M. L. et al. SPEEK/PPSU-based organic-inorganic membranes: proton conducting electrolytes in anhydrous and wet environments. J. Membr. Sci. 279, 186–191 (2006).

  10. 10.

    Chalkova, E., Fedkin, M. V., Wesolowski, D. J. & Lvov, S. N. Effect of TiO2 surface properties on performance of Nafion-based composite membranes in high temperature and low relative humidity PEM fuel cells. J. Electrochem. Soc. 152, A1742–A1747 (2005).

  11. 11.

    Einsla, M. L. et al. Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity. Chem. Mater. 20, 5636–5642 (2008).

  12. 12.

    Nguyen, T. V. & White, R. E. A water and heat management model for proton-exchange-membrane fuel cells. J. Electrochem. Soc. 140, 2178–2186 (1993).

  13. 13.

    Ahluwalia, R. K. et al. Performance of a cross-flow humidifier with a high flux water vapor transport membrane. J. Power Sources 291, 225–238 (2015).

  14. 14.

    Kim, S. Y., Kim, S. & Park, M. J. Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions. Nat. Commun. 1, 88 (2010).

  15. 15.

    Sumida, K. et al. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012).

  16. 16.

    Denny, M. S. Jr, Moreton, J. C., Benz, L. & Cohen, S. M. Metal-organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016).

  17. 17.

    Schoedel, A., Ji, Z. & Yaghi, O. M. The role of metal-organic frameworks in a carbon-neutral energy cycle. Nat. Energy 1, 16034 (2016).

  18. 18.

    Kreno, L. E. et al. Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

  19. 19.

    Bai, S., Liu, X., Zhu, K., Wu, S. & Zhou, H. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 1, 16094 (2016).

  20. 20.

    Zhao, S. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016).

  21. 21.

    Ramaswamy, P., Wong, N. E. & Shimizu, G. K. H. MOFs as proton conductors- challenges and opportunities. Chem. Soc. Rev. 43, 5913–5932 (2014).

  22. 22.

    Horike, S., Umeyama, D. & Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. Acc. Chem. Res. 46, 2376–2384 (2013).

  23. 23.

    Sahoo, S. C., Kundu, T. & Banerjee, R. Helical water chain mediated proton conductivity in homochiral metal-organic frameworks with unprecedented zeolitic unh-topology. J. Am. Chem. Soc. 133, 17950–17958 (2011).

  24. 24.

    Sen, S., Nair, N. N., Yamada, T., Kitagawa, H. & Bharadwaj, P. K. High proton conductivity by a metal-organic framework incorporating Zn8O clusters with aligned imidazolium groups decorating the channels. J. Am. Chem. Soc. 134, 19432–19437 (2012).

  25. 25.

    Yoon, M., Suh, K., Natarajan, S. & Kim, K. Proton conduction in metal-organic frameworks and related modularly built porous solids. Angew. Chem. Int. Ed. 52, 2688–2700 (2013).

  26. 26.

    Shigematsu, A., Yamada, T. & Kitagawa, H. Wide control of proton conductivity in porous coordination polymers. J. Am. Chem. Soc. 133, 2034–2036 (2011).

  27. 27.

    Phang, W. J. et al. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew. Chem. Int. Ed. 54, 5142–5146 (2015).

  28. 28.

    Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

  29. 29.

    Nguyen, N. T. T. et al. Three-dimensional metal-catecholate frameworks and their ultrahigh proton conductivity. J. Am. Chem. Soc. 137, 15394–15397 (2015).

  30. 30.

    Nagarkar, S. S., Unni, S. M., Sharma, A., Kurungot, S. & Ghosh, S. K. Two-in-one: inherent anhydrous and water-assisted high proton conduction in a 3D metal-organic framework. Angew. Chem. Int. Ed. 53, 2638–2642 (2014).

  31. 31.

    Ramaswamy, P., Wong, N. E., Gelfand, B. S. & Shimizu, G. K. H. A water stable magnesium MOF that conducts protons over 10−2 S cm−1. J. Am. Chem. Soc. 137, 7640–7643 (2015).

  32. 32.

    Kim, S., Dawson, K. W., Gelfand, B. S., Taylor, J. M. & Shimizu, G. K. H. Enhancing proton conduction in a metal-organic framework by isomorphous ligand replacement. J. Am. Chem. Soc. 135, 963–966 (2013).

  33. 33.

    Colodrero, R. M. P. et al. High proton conductivity in a flexible, cross-linked, ultramicroporous magnesium tetraphosphonate hybrid framework. Inorg. Chem. 51, 7689–7698 (2012).

  34. 34.

    Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

  35. 35.

    Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 1, 15018–15031 (2016).

  36. 36.

    Wang, C., Liu, X., Demir, N. K., Chen, J. P. & Li, K. Applications of water stable metal-organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016).

  37. 37.

    Bai, Y. et al. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327–2367 (2016).

  38. 38.

    Serre, C. et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007).

  39. 39.

    Nouar, F., Eckert, J., Eubank, J. F., Forster, P. & Eddaoudi, M. Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen storage platform: lithium and magnesium ion-exchange and H2-(rho-ZMOF) interaction studies. J. Am. Chem. Soc. 131, 2864–2870 (2009).

  40. 40.

    Akiyama, G., Matsuda, R., Sato, H., Takata, M. & Kitagawa, S. Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Adv. Mater. 23, 3294–3297 (2011).

  41. 41.

    Kang, J., Khan, N. A., Haque, E. & Jhung, S. H. Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions. Chem. Eur. J. 17, 6437–6442 (2011).

  42. 42.

    Grimaud, A. et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189 (2017).

  43. 43.

    Rangasamy, E. et al. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 137, 1384–1387 (2015).

  44. 44.

    Ponomareva, V. G. et al. Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation. J. Am. Chem. Soc. 134, 15640–15643 (2012).

  45. 45.

    Zheng, N., Bu, X. & Feng, P. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity. Nature 426, 428–432 (2003).

  46. 46.

    Umeyama, D., Horike, S., Inukai, M. & Kitagawa, S. Integration of intrinsic proton conduction and guest-accessible nanospace into a coordination polymer. J. Am. Chem. Soc. 135, 11345–11350 (2013).

  47. 47.

    Xu, H., Tao, S. & Jiang, D. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 15, 722 (2016).

  48. 48.

    Kang, D. W. et al. Cost-effective, high-performance porous-organic-polymer conductors functionalized with sulfonic acid groups by direct postsynthetic substitution. Angew. Chem. Int. Ed. 55, 16357–16360 (2016).

  49. 49.

    Dybtsev, D. N. et al. High proton conductivity and spectroscopic investigations of metal-organic framework materials impregnated by strong acids. ACS Appl. Mater. Inter. 6, 5161–5167 (2014).

  50. 50.

    Phang, W. J. et al. pH-dependent proton conducting behavior in a metal-organic framework material. Angew. Chem. Int. Ed. 53, 8383–8387 (2014).

  51. 51.

    Papadaki, I., Malliakas, C. D., Bakas, T. & Trikalitis, P. N. Molecular supertetrahedron decorated with exposed sulfonate groups built from mixed-valence tetranuclear Fe3 3+Fe2+ (μ3-O)(μ3-SO4)3(CO2)3 clusters. Inorg. Chem. 48, 9968–9970 (2009).

  52. 52.

    Juan-Alcaniz, J. et al. Towards acid MOFs catalytic performance of sulfonic acid functionalized architectures. J. Catal. Sci. Technol. 3, 2311–2318 (2013).

  53. 53.

    Sheldrick, G. M. SHELXTL NT Version 5.1, Program for Solution and Refinement of Crystal Structures. (University of Göttingen, Germany, 1997).

  54. 54.

    Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 36, 7–13 (2003).

  55. 55.

    Taylor, J. M. et al. Facile proton conduction via ordered water molecules in a phosphonate metal-organic framework. J. Am. Chem. Soc. 132, 14055–14057 (2010).

  56. 56.

    Liang, X. et al. From metal-organic framework (MOF) to MOF-polymer composite membrane: enhancement of low-humidity proton conductivity. Chem. Sci. 4, 983–992 (2013).

  57. 57.

    Sun, L., Campbell, M. G. & Dincă, M. Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

Download references


This work was financially supported by the National Natural Science Fund for Innovative Research Groups (51621003), the Natural Science Foundation of China (No. 21576006, 21606006), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD20150309) and the Welch Foundation (AX-1730).

Author information


  1. Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China

    • Fan Yang
    • , Yibo Dou
    • , Bin Wang
    • , Heng Zhang
    •  & Jian-Rong Li
  2. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China

    • Gang Xu
  3. NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-6102, USA

    • Hui Wu
    •  & Wei Zhou
  4. Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China

    • Banglin Chen
  5. Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA

    • Banglin Chen


  1. Search for Fan Yang in:

  2. Search for Gang Xu in:

  3. Search for Yibo Dou in:

  4. Search for Bin Wang in:

  5. Search for Heng Zhang in:

  6. Search for Hui Wu in:

  7. Search for Wei Zhou in:

  8. Search for Jian-Rong Li in:

  9. Search for Banglin Chen in:


J.-R.L. and F.Y. conceived the research idea and designed the experiments. F.Y. performed most of the experiments and analysed data. B.W. participated in the structural determination of MOFs. H.Z. participated in the preparation of MOFs. Y.D. participated in the proton conduction measurement. H.W. and W.Z. performed the PXRD and Le Bail refinements. J.-R.L., B.C., H.W., W.Z., G.X. and F.Y. discussed and co-wrote the paper. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Jian-Rong Li or Banglin Chen.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Figures 1–41, Supplementary Tables 1–3, Supplementary References

  2. Supplementary Data 1

    Crystallographic information for BUT-8(Al)

About this article

Publication history