Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction

Abstract

The design of stable electrolyte materials with high proton conductivity for use in proton exchange membrane fuel cells remains a challenge. Most of the materials explored have good conductivity at high relative humidity (RH), but significantly decreased conductivity at reduced RH. Here we report a chemically stable and structurally flexible metal–organic framework (MOF), BUT-8(Cr)A, possessing a three-dimensional framework structure with one-dimensional channels, in which high-density sulfonic acid (–SO3H) sites arrange on channel surfaces for proton conduction. We propose that its flexible nature, together with its –SO3H sites, could allow BUT-8(Cr)A to self-adapt its framework under different humid environments to ensure smooth proton conduction pathways mediated by water molecules. Relative to other MOFs, BUT-8(Cr)A not only has a high proton conductivity of 1.27 × 10−1 S cm−1 at 100% RH and 80 °C but also maintains moderately high proton conductivity at a wide range of RH and temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of BUT-8(M) (M = Cr, Al) and the ion exchange in BUT-8(Cr).
Fig. 2: Chemical stability and structural flexibility of BUT-8(Cr)A.
Fig. 3: Proton conductivity of BUT-8(Cr)A.
Fig. 4: Proposed self-adaption mechanism.

Similar content being viewed by others

References

  1. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Section 1.0 (US DOE, 2016).

  2. Barbir, F. PEM Fuel Cells: Theory and Practice. (Elsevier Academic Press, New York, 2005).

    Google Scholar 

  3. Mauritz, K. A. & Moore, R. B. State of understanding of Nafion. Chem. Rev. 104, 4535–4585 (2004).

    Article  Google Scholar 

  4. Sone, Y., Ekdunge, P. & Simonsson, D. Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method. J. Electrochem. Soc. 143, 1254–1259 (1996).

    Article  Google Scholar 

  5. Hickner, M. A. et al. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4611 (2004).

    Article  Google Scholar 

  6. Sel, O. et al. Original fuel-cell membranes from crosslinked terpolymers via a “sol-gel” strategy. Adv. Funct. Mater. 20, 1090–1098 (2010).

    Article  Google Scholar 

  7. Vichi, F. M., Tejedor-Tejedor, M. I. & Anderson, M. A. Effect of pore-wall chemistry on proton conductivity in mesoporous titanium dioxide. Chem. Mater. 12, 1762–1770 (2000).

    Article  Google Scholar 

  8. Karim, M. R. et al. Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 135, 8097–8100 (2013).

    Article  Google Scholar 

  9. Di Vona, M. L. et al. SPEEK/PPSU-based organic-inorganic membranes: proton conducting electrolytes in anhydrous and wet environments. J. Membr. Sci. 279, 186–191 (2006).

    Article  Google Scholar 

  10. Chalkova, E., Fedkin, M. V., Wesolowski, D. J. & Lvov, S. N. Effect of TiO2 surface properties on performance of Nafion-based composite membranes in high temperature and low relative humidity PEM fuel cells. J. Electrochem. Soc. 152, A1742–A1747 (2005).

    Article  Google Scholar 

  11. Einsla, M. L. et al. Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity. Chem. Mater. 20, 5636–5642 (2008).

    Article  Google Scholar 

  12. Nguyen, T. V. & White, R. E. A water and heat management model for proton-exchange-membrane fuel cells. J. Electrochem. Soc. 140, 2178–2186 (1993).

    Article  Google Scholar 

  13. Ahluwalia, R. K. et al. Performance of a cross-flow humidifier with a high flux water vapor transport membrane. J. Power Sources 291, 225–238 (2015).

    Article  Google Scholar 

  14. Kim, S. Y., Kim, S. & Park, M. J. Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions. Nat. Commun. 1, 88 (2010).

    Article  Google Scholar 

  15. Sumida, K. et al. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012).

    Article  Google Scholar 

  16. Denny, M. S. Jr, Moreton, J. C., Benz, L. & Cohen, S. M. Metal-organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016).

    Article  Google Scholar 

  17. Schoedel, A., Ji, Z. & Yaghi, O. M. The role of metal-organic frameworks in a carbon-neutral energy cycle. Nat. Energy 1, 16034 (2016).

    Article  Google Scholar 

  18. Kreno, L. E. et al. Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    Article  Google Scholar 

  19. Bai, S., Liu, X., Zhu, K., Wu, S. & Zhou, H. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 1, 16094 (2016).

    Article  Google Scholar 

  20. Zhao, S. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016).

    Article  Google Scholar 

  21. Ramaswamy, P., Wong, N. E. & Shimizu, G. K. H. MOFs as proton conductors- challenges and opportunities. Chem. Soc. Rev. 43, 5913–5932 (2014).

    Article  Google Scholar 

  22. Horike, S., Umeyama, D. & Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. Acc. Chem. Res. 46, 2376–2384 (2013).

    Article  Google Scholar 

  23. Sahoo, S. C., Kundu, T. & Banerjee, R. Helical water chain mediated proton conductivity in homochiral metal-organic frameworks with unprecedented zeolitic unh-topology. J. Am. Chem. Soc. 133, 17950–17958 (2011).

    Article  Google Scholar 

  24. Sen, S., Nair, N. N., Yamada, T., Kitagawa, H. & Bharadwaj, P. K. High proton conductivity by a metal-organic framework incorporating Zn8O clusters with aligned imidazolium groups decorating the channels. J. Am. Chem. Soc. 134, 19432–19437 (2012).

    Article  Google Scholar 

  25. Yoon, M., Suh, K., Natarajan, S. & Kim, K. Proton conduction in metal-organic frameworks and related modularly built porous solids. Angew. Chem. Int. Ed. 52, 2688–2700 (2013).

    Article  Google Scholar 

  26. Shigematsu, A., Yamada, T. & Kitagawa, H. Wide control of proton conductivity in porous coordination polymers. J. Am. Chem. Soc. 133, 2034–2036 (2011).

    Article  Google Scholar 

  27. Phang, W. J. et al. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew. Chem. Int. Ed. 54, 5142–5146 (2015).

    Article  Google Scholar 

  28. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    Article  Google Scholar 

  29. Nguyen, N. T. T. et al. Three-dimensional metal-catecholate frameworks and their ultrahigh proton conductivity. J. Am. Chem. Soc. 137, 15394–15397 (2015).

    Article  Google Scholar 

  30. Nagarkar, S. S., Unni, S. M., Sharma, A., Kurungot, S. & Ghosh, S. K. Two-in-one: inherent anhydrous and water-assisted high proton conduction in a 3D metal-organic framework. Angew. Chem. Int. Ed. 53, 2638–2642 (2014).

    Article  Google Scholar 

  31. Ramaswamy, P., Wong, N. E., Gelfand, B. S. & Shimizu, G. K. H. A water stable magnesium MOF that conducts protons over 10−2 S cm−1. J. Am. Chem. Soc. 137, 7640–7643 (2015).

    Article  Google Scholar 

  32. Kim, S., Dawson, K. W., Gelfand, B. S., Taylor, J. M. & Shimizu, G. K. H. Enhancing proton conduction in a metal-organic framework by isomorphous ligand replacement. J. Am. Chem. Soc. 135, 963–966 (2013).

    Article  Google Scholar 

  33. Colodrero, R. M. P. et al. High proton conductivity in a flexible, cross-linked, ultramicroporous magnesium tetraphosphonate hybrid framework. Inorg. Chem. 51, 7689–7698 (2012).

    Article  Google Scholar 

  34. Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    Article  Google Scholar 

  35. Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 1, 15018–15031 (2016).

    Article  Google Scholar 

  36. Wang, C., Liu, X., Demir, N. K., Chen, J. P. & Li, K. Applications of water stable metal-organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016).

    Article  Google Scholar 

  37. Bai, Y. et al. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327–2367 (2016).

    Article  Google Scholar 

  38. Serre, C. et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007).

    Article  Google Scholar 

  39. Nouar, F., Eckert, J., Eubank, J. F., Forster, P. & Eddaoudi, M. Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen storage platform: lithium and magnesium ion-exchange and H2-(rho-ZMOF) interaction studies. J. Am. Chem. Soc. 131, 2864–2870 (2009).

    Article  Google Scholar 

  40. Akiyama, G., Matsuda, R., Sato, H., Takata, M. & Kitagawa, S. Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Adv. Mater. 23, 3294–3297 (2011).

    Article  Google Scholar 

  41. Kang, J., Khan, N. A., Haque, E. & Jhung, S. H. Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions. Chem. Eur. J. 17, 6437–6442 (2011).

    Article  Google Scholar 

  42. Grimaud, A. et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189 (2017).

    Article  Google Scholar 

  43. Rangasamy, E. et al. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 137, 1384–1387 (2015).

    Article  Google Scholar 

  44. Ponomareva, V. G. et al. Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation. J. Am. Chem. Soc. 134, 15640–15643 (2012).

    Article  Google Scholar 

  45. Zheng, N., Bu, X. & Feng, P. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity. Nature 426, 428–432 (2003).

    Article  Google Scholar 

  46. Umeyama, D., Horike, S., Inukai, M. & Kitagawa, S. Integration of intrinsic proton conduction and guest-accessible nanospace into a coordination polymer. J. Am. Chem. Soc. 135, 11345–11350 (2013).

    Article  Google Scholar 

  47. Xu, H., Tao, S. & Jiang, D. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 15, 722 (2016).

    Article  Google Scholar 

  48. Kang, D. W. et al. Cost-effective, high-performance porous-organic-polymer conductors functionalized with sulfonic acid groups by direct postsynthetic substitution. Angew. Chem. Int. Ed. 55, 16357–16360 (2016).

    Article  Google Scholar 

  49. Dybtsev, D. N. et al. High proton conductivity and spectroscopic investigations of metal-organic framework materials impregnated by strong acids. ACS Appl. Mater. Inter. 6, 5161–5167 (2014).

    Article  Google Scholar 

  50. Phang, W. J. et al. pH-dependent proton conducting behavior in a metal-organic framework material. Angew. Chem. Int. Ed. 53, 8383–8387 (2014).

    Article  Google Scholar 

  51. Papadaki, I., Malliakas, C. D., Bakas, T. & Trikalitis, P. N. Molecular supertetrahedron decorated with exposed sulfonate groups built from mixed-valence tetranuclear Fe3 3+Fe2+ (μ3-O)(μ3-SO4)3(CO2)3 clusters. Inorg. Chem. 48, 9968–9970 (2009).

    Article  Google Scholar 

  52. Juan-Alcaniz, J. et al. Towards acid MOFs catalytic performance of sulfonic acid functionalized architectures. J. Catal. Sci. Technol. 3, 2311–2318 (2013).

    Article  Google Scholar 

  53. Sheldrick, G. M. SHELXTL NT Version 5.1, Program for Solution and Refinement of Crystal Structures. (University of Göttingen, Germany, 1997).

    Google Scholar 

  54. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 36, 7–13 (2003).

    Article  Google Scholar 

  55. Taylor, J. M. et al. Facile proton conduction via ordered water molecules in a phosphonate metal-organic framework. J. Am. Chem. Soc. 132, 14055–14057 (2010).

    Article  Google Scholar 

  56. Liang, X. et al. From metal-organic framework (MOF) to MOF-polymer composite membrane: enhancement of low-humidity proton conductivity. Chem. Sci. 4, 983–992 (2013).

    Article  Google Scholar 

  57. Sun, L., Campbell, M. G. & Dincă, M. Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Fund for Innovative Research Groups (51621003), the Natural Science Foundation of China (No. 21576006, 21606006), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD20150309) and the Welch Foundation (AX-1730).

Author information

Authors and Affiliations

Authors

Contributions

J.-R.L. and F.Y. conceived the research idea and designed the experiments. F.Y. performed most of the experiments and analysed data. B.W. participated in the structural determination of MOFs. H.Z. participated in the preparation of MOFs. Y.D. participated in the proton conduction measurement. H.W. and W.Z. performed the PXRD and Le Bail refinements. J.-R.L., B.C., H.W., W.Z., G.X. and F.Y. discussed and co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jian-Rong Li or Banglin Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–41, Supplementary Tables 1–3, Supplementary References

Supplementary Data 1

Crystallographic information for BUT-8(Al)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Xu, G., Dou, Y. et al. A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction. Nat Energy 2, 877–883 (2017). https://doi.org/10.1038/s41560-017-0018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-017-0018-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing