Review Article

Emergence of highly transparent photovoltaics for distributed applications

  • Nature Energyvolume 2pages849860 (2017)
  • doi:10.1038/s41560-017-0016-9
  • Download Citation
Published online:


Solar energy offers a viable solution to our growing energy need. While adoption of conventional photovoltaics on rooftops and in solar farms has grown rapidly in the last decade, there is still plenty of opportunity for expansion. See-through solar technologies with partial light transmission developed over the past 30 years have initiated methods of integration not possible with conventional modules. The large-scale deployment necessary to offset global energy consumption could be further accelerated by developing fully invisible solar cells that selectively absorb ultraviolet and near-infrared light, allowing many of the surfaces of our built environment to be turned into solar harvesting arrays without impacting the function or aesthetics. Here, we review recent advances in photovoltaics with varying degrees of visible light transparency. We discuss the figures of merit necessary to characterize transparent photovoltaics, and outline the requirements to enable their widespread adoption in buildings, windows, electronic device displays, and automobiles.

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • Correction 29 January 2018

    In the version of this Review originally published, the Fig. 7a y-axis unit was incorrectly given as ‘mW cm2’; it should have read ‘mW cm–2’. This has now been corrected in all versions of the Review.


  1. 1.

    Denholm, P. & Margolis, R. M. Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States. Energy Policy 36, 3531–3543 (2008).

  2. 2.

    Moriarty, P. & Honnery, D. What is the global potential for renewable energy? Renew. Sustain. Energy Rev. 16, 244–252 (2012).

  3. 3.

    A Snapshot of Global PV (1992–2014) (Photovoltaic Power Systems Programme, International Energy Agency, 2014);

  4. 4.

    Jelle, B. Building integrated photovoltaics: a concise description of the current state of the art and possible research pathways. Energies 9, 21 (2016).

  5. 5.

    Eiffert, P. & Kiss, G. J. Building-Integrated Photovoltaic Designs for Commercial and Institutional Structures: A Sourcebook for Architects Report no. NREL/BK-520-25272 (National Renewable Energy Laboratory, Golden, CO, 2000).

  6. 6.

    Gagnon, P. et al. Rooftop Solar Photovoltaic Technical Potential in the United States Report no. NREL/PR 6A20 65586 (National Renewable Energy Laboratory, 2016).

  7. 7.

    Commercial Buildings Energy Consumption Survey (CBECS) Data (US Energy Information Administration, 2012);

  8. 8.

    2009 Residential Energy Consumption Survey (RECS) Data (US Energy Information Adminstration, 2009);

  9. 9.

    Yang, R. J. & Zou, P. X. W. Building integrated photovoltaics (BIPV): costs, benefits, risks, barriers and improvement strategy. Int. J. Const. Manage 16, 39–53 (2016).

  10. 10.

    Lunt, R. R. Theoretical limits for visibly transparent photovoltaics. Appl. Phys. Lett. 101, 043902 (2012). This work provides the calculation of the theoretical efficiency limits for TPV as a function of AVT.

  11. 11.

    Lunt, R. R. et al. Practical roadmap and limits to nanostructured photovoltaics. Adv. Mater. 23, 5712–5727 (2011).

  12. 12.

    Yoon, J. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907–915 (2008).

  13. 13.

    Eperon, G. E. et al. Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite. J. Phys. Chem. Lett. 6, 129–138 (2015).

  14. 14.

    Eperon, G. E., Burlakov, V. M., Goriely, A. & Snaith, H. J. Neutral color semitransparent microstructured perovskite solar cells. ACS Nano 8, 591–598 (2014).

  15. 15.

    Leijtens, T. et al. Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963 (2015).

  16. 16.

    Zhang, X., Eperon, G. E., Liu, J. & Johansson, E. M. J. Semitransparent quantum dot solar cell. Nano Energy 22, 70–78 (2016).

  17. 17.

    Saifullah, M. et al. Development of semitransparent CIGS thin-film solar cells modified with a sulfurized-AgGa layer for building applications. J. Mater. Chem. A 4, 10542–10551 (2016).

  18. 18.

    Karsthof, R., Räcke, P., von Wenckstern, H. & Grundmann, M. Semi-transparent NiO/ZnO UV photovoltaic cells. Phys. Status Solidi A 213, 30–37 (2016).

  19. 19.

    Lim, J. W., Lee, D. J. & Yun, S. J. Semi-transparent amorphous silicon solar cells using a thin p-si layer and a buffer layer. ECS Solid State Lett. 2, Q47–Q49 (2013).

  20. 20.

    Guo, F. et al. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7, 1642–1649 (2015).

  21. 21.

    Della Gaspera, E. et al. Ultra-thin high efficiency semitransparent perovskite solar cells. Nano Energy 13, 249–257 (2015).

  22. 22.

    Meiss, J. et al. Near-infrared absorbing semitransparent organic solar cells. Appl. Phys. Lett. 99, 193307 (2011).

  23. 23.

    Lee, J.-Y., Connor, S. T., Cui, Y. & Peumans, P. Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett. 10, 1276–1279 (2010).

  24. 24.

    Betancur, R. et al. Transparent polymer solar cells employing a layered light-trapping architecture. Nat. Photon. 7, 995–1000 (2013).

  25. 25.

    Adikaari, A. A. D. et al. Near infrared up-conversion in organic photovoltaic devices using an efficient Yb3+:Ho3+ Co-doped Ln2BaZnO5 (Ln = Y, Gd) phosphor. J. Appl. Phys. 111, 094502 (2012).

  26. 26.

    Zhang, K. et al. High-performance, transparent, dye-sensitized solar cells for see-through photovoltaic windows. Adv. Energy Mater. 4, 1301966 (2014).

  27. 27.

    Chiang, Y.-F. et al. Non-color distortion for visible light transmitted tandem solid state dye-sensitized solar cells. Renew. Energy 59, 136–140 (2013).

  28. 28.

    Meiss, J. et al. Highly efficient semitransparent tandem organic solar cells with complementary absorber materials. Appl. Phys. Lett. 99, 043301 (2011).

  29. 29.

    Yusoff, A. Rb. M. et al. High-performance semitransparent tandem solar cell of 8.02% conversion efficiency with solution-processed graphene mesh and laminated ag nanowire top electrodes. Adv. Energy Mater. 4, 1301989 (2014).

  30. 30.

    Lee, K.-T. et al. Colored dual-functional photovoltaic cells. J. Optics 18, 064003 (2016).

  31. 31.

    Lunt, R. R. & Bulovic, V. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl. Phys. Lett. 98, 113305 (2011). This work demonstrates the approach to wavelength-selective TPV with high AVT.

  32. 32.

    Chen, C.-C. et al. Visibly transparent polymer solar cells produced by solution processing. ACS Nano 6, 7185–7190 (2012). This study utilizes the polymer PBDTT-DPP to fabricate fully solution-processed high efficiency wavelength-selective TPV.

  33. 33.

    Liu, F. et al. Efficient semitransparent solar cells with high NIR responsiveness enabled by a small-bandgap electron acceptor. Adv. Mater. 29, 1606574 (2017).

  34. 34.

    Wang, W. et al. Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency. Adv. Mater. 29, 1701308 (2017). In this work, wavelength-selective photoactive materials are utilized to fabricate TPV with up to 9.77% PCE and 32% AVT.

  35. 35.

    Batchelder, J. S., Zewai, A. H. & Cole, T. Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation. Appl. Opt. 18, 3090–3110 (1979).

  36. 36.

    Yang, C. & Lunt, R. R. Limits of visibly transparent luminescent solar concentrators. Adv. Opt. Mater. 5, 1600851 (2017). This work calculates the theoretical performance limits of UV/NIR wavelength-selective LSCs and identifies key materials and engineering challenges to enable complete optimization and commercial deployment.

  37. 37.

    Slooff, L. H. et al. A luminescent solar concentrator with 7.1% power conversion efficiency. Phys. Status Solidi R 2, 257–259 (2008).

  38. 38.

    Meinardi, F. et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotech 10, 878–885 (2015).

  39. 39.

    Meinardi, F. et al. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nat. Photon. 11, 177–185 (2017).

  40. 40.

    Chen, R.-T., Chau, J. L. H. & Hwang, G.-L. Design and fabrication of diffusive solar cell window. Renew. Energy 40, 24–28 (2012).

  41. 41.

    Zhao, Y. & Lunt, R. R. Transparent luminescent solar concentrators for large-area solar windows enabled by massive Stokes-shift nanocluster phosphors. Adv. Energy Mater. 3, 1143–1148 (2013). UV-selective hexanuclear metal halide nanoclusters are utilized to demonstrate visibly clear LSCs, scalable to practical sizes due to a large Stokes shift, which significantly reduces reabsorption losses.

  42. 42.

    Zhao, Y., Meek, G. A., Levine, B. G. & Lunt, R. R. Near-infrared harvesting transparent luminescent solar concentrators. Adv. Opt. Mater. 2, 606–611 (2014). Organic salts are utilized to demonstrate the approach of NIR wavelength-selective LSCs with high AVT and CRI of 88% and 94, respectively.

  43. 43.

    Banal, J. L. et al. A transparent planar concentrator using aggregates of gem-pyrene ethenes. Adv. Energy Mater. 5, 1500818 (2015).

  44. 44.

    Erickson, C. S. et al. Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano 8, 3461–3467 (2014). UV-selective LSCs utilizing Mn-doped ZnSe quantum dots with a large Stokes shift are demonstrated, expanding the catalogue of non-toxic luminescent materials applicable to wavelength-selective LSCs scalable to practical sizes.

  45. 45.

    Rondão, R. et al. High-performance near-infrared luminescent solar concentrators. ACS Appl. Mater. Interfac. 9, 12540–12546 (2017).

  46. 46.

    Ostroverkhova, O. Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 116, 13279–13412 (2016).

  47. 47.

    Schlenker, C. W. & Thompson, M. E. in Unimolecular and Supramolecular Electronics I 1st edn, Vol. 312 (ed Metzger, R. M.) Ch. 4 (Springer Verlag, Berlin, 2011).

  48. 48.

    Lunt, R. R. et al. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J. Appl. Phys. 105, 053711 (2009).

  49. 49.

    Wu, M.-Y., Jacobberger, R. M. & Arnold, M. S. Design length scales for carbon nanotube photoabsorber based photovoltaic materials and devices. J. Appl. Phys. 113, 204504 (2013).

  50. 50.

    Peumans, P., Soichi, U. & Forrest, S. R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158–162 (2003).

  51. 51.

    Inganäs, O., Tang, Z., Bergqvist, J. & Tvingstedt, K. in Organic Solar Cells: Fundamentals, Devices, and Upscaling 1st edn, Vol. 1 (eds Rand, B. P. & Richter, H.) Ch. 8 (CRC Press, Boca Raton, FL, 2014).

  52. 52.

    Menke, S. M., Luhman, W. A. & Holmes, R. J. Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency. Nat. Mater. 12, 152–157 (2013).

  53. 53.

    Mullenbach, T. K. et al. Connecting molecular structure and exciton diffusion length in rubrene derivatives. Adv. Mater. 25, 3689–3693 (2013).

  54. 54.

    Lunt, R. R., Benziger, J. B. & Forrest, S. R. Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv. Mater. 22, 1233–1236 (2010).

  55. 55.

    Choi, S., Potscavage, W. J. Jr & Kippelen, B. Area-scaling of organic solar cells. J. Appl. Phys. 106, 054507 (2009).

  56. 56.

    Cho, D.-Y. et al. Transparent and flexible amorphous InZnAlO films grown by roll-to-roll sputtering for acidic buffer-free flexible organic solar cells. Org. Electron. 24, 227–233 (2015).

  57. 57.

    Jean, J., Wang, A. & Bulović, V. In situ vapor-deposited parylene substrates for ultra-thin, lightweight organic solar cells. Org. Electron. 31, 120–126 (2016).

  58. 58.

    Choi, K.-H., Jeong, J.-A. & Kim, H.-K. Dependence of electrical, optical, and structural properties on the thickness of IZTO thin films grown by linear facing target sputtering for organic solar cells. Sol. Energy Mater. Sol. Cells 94, 1822–1830 (2010).

  59. 59.

    Choi, Y.-Y., Kang, S. J. & Kim, H.-K. Rapid thermal annealing effect on the characteristics of ZnSnO3 films prepared by RF magnetron sputtering. Curr. Appl. Phys. 12 (Suppl. 4), S104–S107 (2012). 

  60. 60.

    Lee, H.-M., Kang, S.-B., Chung, K.-B. & Kim, H.-K. Transparent and flexible amorphous In-Si-O films for flexible organic solar cells. Appl. Phys. Lett. 102, 021914 (2013).

  61. 61.

    Smith, S. & Chen, W.-H. in Design for Innovative Value Towards a Sustainable Society 1st edn, Vol. 1 (eds Matsumoto, M. et al.) Ch. 150 (Springer, 2012).

  62. 62.

    Weiser, A., Lang, D. J., Schomerus, T. & Stamp, A. Understanding the modes of use and availability of critical metals – An expert-based scenario analysis for the case of indium. J. Clean. Prod. 94, 376–393 (2015).

  63. 63.

    Hu, L., Wu, H. & Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 36, 760–765 (2011).

  64. 64.

    Li, H. et al. Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators. Nat. Energy 1, 16157 (2016).

  65. 65.

    Bernardi, M. et al. Solar energy generation in three dimensions. Energy Environ. Sci. 5, 6880–6884 (2012).

  66. 66.

    Marion, W. & Wilcox, S. Users Manual for TMY3 Data Sets (National Renewable Energy Laboratory, 2008);

  67. 67.

    Marion, W. & Wilcox, S. Solar Radiation Data Manual for Buildings (National Renewable Energy Laboratory, 1995);

  68. 68.

    Young, M. et al. Angle dependence of transparent photovoltaics in conventional and optically inverted configurations. Appl. Phys. Lett. 103, 133304 (2013).

  69. 69.

    Ding, Y. et al. Influence of photovoltaic angle-dependence on overall power output for fixed building integrated configurations. Sol. Energy Mater. Sol. Cells 132, 523–527 (2015).

  70. 70.

    Ball, J. M. et al. Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8, 602–609 (2015).

  71. 71.

    Leem, J. W., Guan, X.-Y. & Yu, J. S. Tunable distributed Bragg reflectors with wide-angle and broadband high-reflectivity using nanoporous/dense titanium dioxide film stacks for visible wavelength applications. Opt. Express 22, 18519–18526 (2014).

  72. 72.

    Espinosa, N., Hosel, M., Angmo, D. & Krebs, F. C. Solar cells with one-day energy payback for the factories of the future. Energy Environ. Sci. 5, 5117–5132 (2012).

  73. 73.

    Rosch, R. et al. Investigation of the degradation mechanisms of a variety of organic photovoltaic devices by combination of imaging techniques: the ISOS-3 inter-laboratory collaboration. Energy Environ. Sci. 5, 6521–6540 (2012).

  74. 74.

    Mateker, W. R. et al. Minimal long-term intrinsic degradation observed in a polymer solar cell illuminated in an oxygen-free environment. Chem. Mater. 27, 404–407 (2015).

  75. 75.

    Roesch, R. et al. Polymer solar cells with enhanced lifetime by improved electrode stability and sealing. Sol. Energy Mater. Sol. Cells 117, 59–66 (2013).

  76. 76.

    Burlingame, Q. et al. Reliability of small molecule organic photovoltaics with electron-filtering compound buffer layers. Adv. Energy Mater. 6, 1601094 (2016).

  77. 77.

    Gevorgyan, S. A. et al. Lifetime of organic photovoltaics: status and predictions. Adv. Energy Mater. 6, 1501208 (2016).

  78. 78.

    Lungenschmied, C. et al. Flexible encapsulation for organic solar cells. Proc. SPIE 6197, 619712 (2006).

  79. 79.

    Chen, C.-C. et al. High-performance semi-transparent polymer solar cells possessing tandem structures. Energy Environ. Sci. 6, 2714–2720 (2013).

  80. 80.

    Young, M. et al. Organic heptamethine salts for photovoltaics and detectors with near-infrared photoresponse up to 1600 nm. Adv. Opt. Mater. 4, 1028–1033 (2016).

  81. 81.

    Zhang, H. et al. Semitransparent organic photovoltaics using a near-infrared absorbing cyanine dye. Sol. Energy Mater. Sol. Cells 118, 157–164 (2013).

  82. 82.

    Suddard-Bangsund, J. et al. Organic salts as a route to energy level control in low bandgap, high open-circuit voltage organic and transparent solar cells that approach the excitonic voltage limit. Adv. Energy Mater. 6, 1501659 (2015).

  83. 83.

    Knupfer, M. Exciton binding energies in organic semiconductors. Appl. Phys. A 77, 623–626 (2003).

  84. 84.

    Kraner, S., Scholz, R., Koerner, C. & Leo, K. Design proposals for organic materials exhibiting a low exciton binding energy. J. Phys. Chem. C 119, 22820–22825 (2015).

  85. 85.

    Zimmerman, J. D. et al. Porphyrin-tape/C60 organic photodetectors with 6.5% external quantum efficiency in the near infrared. Adv. Mater. 22, 2780–2783 (2010).

  86. 86.

    Finlayson, E. U. et al. WINDOW 4.0: Documentation of Calculation Procedures Report no. LBL-33943 (Lawrence Berkeley Laboratory and Enermodal Engineering, Inc., 1993).

  87. 87.

    Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).

  88. 88.

    Burkhard, G. F., Hoke, E. T. & McGehee, M. D. Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells. Adv. Mater. 22, 3293–3297 (2010).

  89. 89.

    Pandey, R. & Holmes, R. J. Characterizing the charge collection efficiency in bulk heterojunction organic photovoltaic cells. Appl. Phys. Lett. 100, 083303 (2012).

  90. 90.

    Treml, B. E. & Hanrath, T. Quantitative framework for evaluating semitransparent photovoltaic windows. ACS Energy Lett. 1, 391–394 (2016).

  91. 91.

    Davy, N. C. et al. Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nat. Energy 2, 17104 (2017). UV-selective TPV are demonstrated to directly power electrochromic smart windows to reduce lighting, heating, and cooling costs in buildings.

  92. 92.

    Llordes, A. et al. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing. Nat. Mater. 15, 1267–1273 (2016).

  93. 93.

    Llordes, A., Garcia, G., Gazquez, J. & Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013).

  94. 94.

    Ubiquitous Energy’s Truly Transparent Solar Technology Demonstrated Globally in BMW Brand Stores (Ubiquitous Energy, 2016);

  95. 95.

    Baker, D. R. Elon Musk’s solar roof is pretty, but it's not the first. San Francisco Chronicle (31 October 2016);

  96. 96.

    Windows for High Performance Commercial Buildings (2015);

  97. 97.

    Fisette, P. Windows: Understanding Energy Efficient Performance (University of Massachusetts, 2003);

  98. 98.

    Mescher, J. et al. Design rules for semi-transparent organic tandem solar cells for window integration. Org. Electron. 15, 1476–1480 (2014).

  99. 99.

    Alessi, P. J. et al. Colorimetry Report No. 15:2004 (International Commission on Illumination, 2004).

  100. 100.

    Franklin, E., Everett, V., Blakers, A. & Weber, K. Sliver solar cells: high-efficiency, low-cost PV technology. Adv. Optoelectron. 2007, 9 (2007).

  101. 101.

    Bu, L. et al. Semitransparent fully air processed perovskite solar cells. ACS Appl. Mater. Interf. 7, 17776–17781 (2015).

  102. 102.

    Debije, M. G. & Verbunt, P. P. C. Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energy Mater. 2, 12–35 (2012).

  103. 103.

    Tu, X., Manohar, S., Jagota, A. & Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009).

Download references


Financial support for this work was provided by the National Science Foundation (CBET-1511098, 1254662, and 1702591, to C.J.T. and R.R.L.) and by the American Physical Society through the Stanford R. Ovshinsky Sustainable Energy Fellowship Award (R.R.L.). C.J.T. also acknowledges the Department of Education for support under the Graduate Assistantship in Areas of National Need (GAANN) Award (P200A140215). The authors thank G. Flores for assistance with the survey of transparent photovoltaic demonstrations and D. Hess for reviewing the manuscript.

Author information


  1. Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA

    • Christopher J. Traverse
    •  & Richard R. Lunt
  2. Ubiquitous Energy, Inc., Redwood City, CA, 94063, USA

    • Richa Pandey
    •  & Miles C. Barr
  3. Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48824, USA

    • Richard R. Lunt


  1. Search for Christopher J. Traverse in:

  2. Search for Richa Pandey in:

  3. Search for Miles C. Barr in:

  4. Search for Richard R. Lunt in:

Competing interests

R.P., M.C.B., and R.R.L. have minority ownership interest in Ubiquitous Energy. M.C.B. is the current CEO of Ubiquitous Energy. All other authors declare no competing financial interests.

Corresponding author

Correspondence to Richard R. Lunt.

Supplementary information

  1. Supplementary Data 1

    The tab entitled “PV tables” gathers the data of the literature survey presented in Fig. 3. The tab entitled “LCOE” presents the calculation of the levelized cost of electricity for the proposed PV window films discussed in the manuscript. The tab entitled “Solar flux” presents the calculation of the solar flux as a function of façade orientation