Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth

Abstract

High-surface-area, nanostructured carbon is widely used for encapsulating sulfur and improving the cyclic stability of Li–S batteries, but the high carbon content and low packing density limit the specific energy that can be achieved. Here we report an approach that does not rely on sulfur encapsulation. We used a low-surface-area, open carbon fibre architecture to control the nucleation and growth of the sulfur species by manipulating the carbon surface chemistry and the solvent properties, such as donor number and Li+ diffusivity. Our approach facilitates the formation of large open spheres and prevents the production of an undesired insulating sulfur-containing film on the carbon surface. This mechanism leads to ~100% sulfur utilization, almost no capacity fading, over 99% coulombic efficiency and high energy density (1,835 Wh kg−1 and 2,317 Wh l−1). This finding offers an alternative approach for designing high-energy and low-cost Li–S batteries through controlling sulfur reaction on low-surface-area carbon.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Two different growth pathways of sulfur species during electrochemical process in Li–S batteries.
Fig. 2: Electrochemical profiles and the discharge product morphology of Li–S batteries with different electrode processes.
Fig. 3: Electrochemical performances of sulfur electrodes.
Fig. 4: Operando EIS analysis of Non-Encap-S/CF|Li and MD-Encap-S/CF|Li cells during cycling.
Fig. 5: Characterization of O2-plasma-treated CF electrodes.
Fig. 6: SEM images showing the Li2S morphologies on discharge with 1 M Li2S8 in different solvents.
Fig. 7: MD simulation and experimental diffusion measurements in different solvent systems.

References

  1. 1.

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article  Google Scholar 

  2. 2.

    Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    Article  Google Scholar 

  3. 3.

    Manthiram, A., Chung, S.-H. & Zu, C. Lithium–sulfur batteries: Progress and prospects. Adv. Mater. 27, 1980–2006 (2015).

    Article  Google Scholar 

  4. 4.

    Eroglu, D., Zavadil, K. R. & Gallagher, K. G. Critical link between materials chemistry and cell-level design for high energy density and low cost lithium–sulfur transportation battery. J. Electrochem. Soc. 162, A982–A990 (2015).

    Article  Google Scholar 

  5. 5.

    Hagen, M. et al. Lithium–sulfur cells: The gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5, 1401986 (2015).

    Article  Google Scholar 

  6. 6.

    Lv, D. et al. High energy density lithium–sulfur batteries: Challenges of thick sulfur cathodes. Adv. Energy Mater. 5, 1402290 (2015).

    Article  Google Scholar 

  7. 7.

    Mikhaylik, Y. V. & Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969–A1976 (2004).

    Article  Google Scholar 

  8. 8.

    Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702 (2009).

    Article  Google Scholar 

  9. 9.

    Yang, Y. et al. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc. 134, 15387–15394 (2012).

    Article  Google Scholar 

  10. 10.

    Meini, S., Elazari, R., Rosenman, A., Garsuch, A. & Aurbach, D. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li–S battery systems. J. Phys. Chem. Lett. 5, 915–918 (2014).

    Article  Google Scholar 

  11. 11.

    Schuster, J. et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Edn 51, 3591–3595 (2012).

    Article  Google Scholar 

  12. 12.

    Zhang, C., Wu, H. B., Yuan, C., Guo, Z. & Lou, X. W. Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew. Chem. 124, 9730–9733 (2012).

    Article  Google Scholar 

  13. 13.

    Cao, Y. et al. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 13, 7660–7665 (2011).

    Article  Google Scholar 

  14. 14.

    Zhou, G. et al. A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv. Mater. 26, 625–631 (2014).

    Article  Google Scholar 

  15. 15.

    Zheng, G., Yang, Y., Cha, J. J., Hong, S. S. & Cui, Y. Hollow Carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11, 4462–4467 (2011).

    Article  Google Scholar 

  16. 16.

    Zheng, G. et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13, 1265–1270 (2013).

    Article  Google Scholar 

  17. 17.

    Wei Seh, Z. et al. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2013).

    Article  Google Scholar 

  18. 18.

    Pang, Q., Kundu, D., Cuisinier, M. & Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014).

    Article  Google Scholar 

  19. 19.

    Xiao, L. et al. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv. Mater. 24, 1176–1181 (2012).

    Article  Google Scholar 

  20. 20.

    Chen, H. et al. Rational design of cathode structure for high rate performance lithium–sulfur batteries. Nano Lett. 15, 5443–5448 (2015).

    Article  Google Scholar 

  21. 21.

    Song, J., Yu, Z., Gordin, M. L. & Wang, D. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium–sulfur batteries. Nano Lett. 16, 864–870 (2016).

    Article  Google Scholar 

  22. 22.

    Fan, Q., Liu, W., Weng, Z., Sun, Y. & Wang, H. Ternary hybrid material for high-performance lithium–sulfur battery. J. Am. Chem. Soc. 137, 12946–12953 (2015).

    Article  Google Scholar 

  23. 23.

    Sun, Q. et al. An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium–sulfur batteries. Angew. Chem. Int. Edn 54, 10539–10544 (2015).

    Article  Google Scholar 

  24. 24.

    Manthiram, A., Fu, Y. & Su, Y.-S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2012).

    Article  Google Scholar 

  25. 25.

    Yao, H. et al. Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy Environ. Sci. 7, 3381–3390 (2014).

    Article  Google Scholar 

  26. 26.

    Yao, H. et al. Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 5, 3943 (2014).

    Google Scholar 

  27. 27.

    Xu, R. et al. Insight into sulfur reactions in Li–S batteries. ACS Appl. Mat. Interfaces 6, 21938–21945 (2014).

    Google Scholar 

  28. 28.

    Fan, F. Y. et al. Polysulfide flow batteries enabled by percolating nanoscale conductor networks. Nano Lett. 14, 2210–2218 (2014).

    Article  Google Scholar 

  29. 29.

    Zheng, J. et al. Controlled nucleation and growth process of Li2S2/Li2S in lithium-sulfur batteries. J. Electrochem. Soc. 160, A1992–A1996 (2013).

    Article  Google Scholar 

  30. 30.

    Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat. Chem. 7, 50–56 (2015).

    Article  Google Scholar 

  31. 31.

    Gao, X., Chen, Y., Johnson, L. & Bruce, P. G. Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 15, 882–888 (2016).

    Article  Google Scholar 

  32. 32.

    Fan, F. Y., Carter, W. C. & Chiang, Y.-M. Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv. Mater. 27, 5203–5209 (2015).

    Article  Google Scholar 

  33. 33.

    Liu, T. et al. Cycling Li–O2 batteries via LiOH formation and decomposition. Science 350, 530–533 (2015).

    Article  Google Scholar 

  34. 34.

    Cañas, N. A. et al. Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochim. Acta 97, 42–51 (2013).

    Article  Google Scholar 

  35. 35.

    Deng, Z. et al. Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J. Electrochem. Soc. 160, A553–A558 (2013).

    Article  Google Scholar 

  36. 36.

    Fan, F. Y. & Chiang, Y.-M. Electrodeposition kinetics in Li-S batteries: Effects of low electrolyte/sulfur ratios and deposition surface composition. J. Electrochem. Soc. 164, A917–A922 (2017).

    Article  Google Scholar 

  37. 37.

    Estevez, L. et al. Tunable oxygen functional groups as electrocatalysts on graphite felt surfaces for all-vanadium flow batteries. ChemSusChem 9, 1455–1461 (2016).

    Article  Google Scholar 

  38. 38.

    Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    Article  Google Scholar 

  39. 39.

    Cataldo, F. A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA. Eur. Chem. Bull. 4, 92–97 (2015).

    Google Scholar 

  40. 40.

    Thanh, N. T. K., Maclean, N. & Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014).

    Article  Google Scholar 

  41. 41.

    Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014).

    Article  Google Scholar 

  42. 42.

    Bijani, S. et al. Study of the Nucleation and growth mechanisms in the electrodeposition of micro- and nanostructured Cu2O thin films. J. Phys. Chem. C 115, 21373–21382 (2011).

    Article  Google Scholar 

  43. 43.

    Wei, C., Wu, G., Yang, S. & Liu, Q. Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation. Sci. Rep. 6, 34779 (2016).

    Article  Google Scholar 

  44. 44.

    Abraham, M. J., van der Spoel, D., Lindahl, E., Hess, B. & GROMACS Development Team. GROMACS User Manual version 5.1.2. GROMACS User Manual v.5.1.2 (2016); www.gromacs.org.

  45. 45.

    Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. Packmol: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  Google Scholar 

  46. 46.

    Bussi, G., Zykova-Timan, T. & Parrinello, M. Isothermal-isobaric molecular dynamics using stochastic velocity rescaling. J. Chem. Phys. 130, 074101 (2009).

    Article  Google Scholar 

  47. 47.

    Takeuchi, M. et al. Ion–ion interactions of LiPF6 and LiBF4 in propylene carbonate solutions. J. Mol. Liq. 148, 99–108 (2009).

    Article  Google Scholar 

  48. 48.

    Rajput, N. N. et al. Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions. Chem. Mater. 29, 3375–3379 (2017).

    Article  Google Scholar 

  49. 49.

    Frisch, M. et al. Gaussian 09 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  50. 50.

    Rajput, N. N., Qu, X., Sa, N., Burrell, A. K. & Persson, K. A. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics. J. Am. Chem. Soc. 137, 3411–3420 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES). The SEM images, XPS and NMR measurements were performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the US Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830.

Author information

Affiliations

Authors

Contributions

H.P., Y.S. and J.L. conceived the research. H.P., Y.S., J.L. and Y.C. designed the experiments. H.P., J.C., R.C. and L.E. performed the experiments and measurements. V.M., K.H. and K.T.M. performed NMR. N.N.R. and K.P. performed MD simulation. M.H.E. performed XPS analysis. All authors discussed the results. K.P., J.-G.Z., K.T. and Y.C. revised the manuscript. H.P., Y.S. and J.L. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Yuyan Shao or Jun Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–13, Supplementary Tables 1 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Chen, J., Cao, R. et al. Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nat Energy 2, 813–820 (2017). https://doi.org/10.1038/s41560-017-0005-z

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing