Article

Understanding the life cycle surface land requirements of natural gas-fired electricity

  • Nature Energyvolume 2pages804812 (2017)
  • doi:10.1038/s41560-017-0004-0
  • Download Citation
Received:
Accepted:
Published:

Abstract

The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. Here we present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m2 MWh−1, 95% confidence intervals ±0.01 m2 MWh−1) was dominated by midstream infrastructure, particularly pipelines (74%). Our results were sensitive to power plant heat rate (85–190% of the base case), facility lifetime (89–169%), number of wells per site (16–100%), well lifetime (92–154%) and pipeline right of way (58–142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Weber, C. L. & Clavin, C. Life cycle carbon footprint of shale gas: Review of evidence and implications. Environ. Sci. Technol. 46, 5688–5695 (2012).

  2. 2.

    Brandt, A. R. et al. Methane leaks from North American natural gas systems. Science 343, 733–735 (2014).

  3. 3.

    Heath, G. A., O’Donoughue, P., Arent, D. J. & Bazilian, M. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation. Proc. Natl Acad. Sci. USA 111, E3176 (2014).

  4. 4.

    Stephenson, T., Valle, J. E. & Riera-Palou, X. Modeling the relative GHG emissions of conventional and shale gas production. Environ. Sci. Technol. 45, 10757–10764 (2011).

  5. 5.

    Howarth, R. W., Santoro, R. & Ingraffea, A. Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim. Change 106, 679–690 (2011).

  6. 6.

    Burnham, A. et al. Life cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum. Environ. Sci. Technol. 46, 619–627 (2011).

  7. 7.

    Venkatesh, A., Jaramillo, P., Griffin, W. M. & Matthews, H. S. Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy. Environ. Sci. Technol. 45, 8182–8189 (2011).

  8. 8.

    Fulton, M., Mellquist, N., Kitasei, S. & Bluestein, J. Comparing Life Cycle Greenhouse Gas Emissions from Natural Gas and Coal (Deutsch Bank and Worldwatch Institute, 2011); http://www.worldwatch.org/system/files/pdf/Natural_Gas_LCA_Update_082511.pdf

  9. 9.

    Jiang, M. et al. Life cycle greenhouse gas emissions of Marcellus shale gas. Environ. Res. Lett. 6, 034014 (2011).

  10. 10.

    Logan, J. et al. Natural Gas and the Transformation of the US Energy Sector: Electricity. NREL/TP-6A50-55538 (National Renewable Energy Laboratory, 2012).

  11. 11.

    Skone, T. J., Littlefield, J. & Marriott, J. Life Cycle Greenhouse Gas Inventory of Natural Gas Extraction, Delivery and Electricity Production. DOE/NETL-2011/1522 (National Energy Technology Laboratory, 2011).

  12. 12.

    Nicot, J. & Scanlon, B. R. Water use for shale-gas production in Texas, US. Environ. Sci. Technol. 46, 3580–3586 (2012).

  13. 13.

    Jiang, M., Hendrickson, C. T. & VanBriesen, J. M. Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well. Environ. Sci. Technol. 48, 1911–1920 (2014).

  14. 14.

    Johnson, N. et al. Pennsylvania Energy Impacts Assessment Report 1: Marcellus Shale Natural Gas and Wind (The Nature Conservancy-Pennsylvania Chapter Harrisburg, PA, US, 2010).

  15. 15.

    Bureau of Land Management Greater Uinta Basin-Oil and Gas Cumulative Impacts Technical Support Document (US Department of the Interior, Bureau of Land Management Field Office, Vernal, UT, 2012)

  16. 16.

    Fthenakis, V. & Kim, H. C. Land use and electricity generation: A life cycle analysis. Renew. Sustain. Energy Rev. 13, 1465–1474 (2009).

  17. 17.

    McDonald, R. I., Fargione, J., Kiesecker, J., Miller, W. M. & Powell, J. Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PLoS ONE 4, e6802 (2009).

  18. 18.

    Skone, T. J. et al. Life Cycle Analysis: Natural Gas Combined Cycle (NGCC) Power Plant DOE/NETL-403-110509 (National Energy Technology Laboratory, 2012).

  19. 19.

    Murphy, D. J., Horner, R. M. & Clark, C. E. The impact of off-site land use energy intensity on the overall life cycle land use energy intensity for utility-scale solar electricity generation technologies. J. Renew. Sustain Energy 7, 033116 (2015).

  20. 20.

    Smil, V. Energy at the Crossroads: Global Perspectives and Uncertainties (MIT Press, Cambridge, MA, 2003).

  21. 21.

    Brown, P. & Whitney, G. US Renewable Electricity Generation: Resources and Challenges (Congressional Research Services, 2011).

  22. 22.

    Jordaan, S. M. The Land Use Footprint of Energy Extraction in Alberta. PhD thesis, Univ. Calgary (2010).

  23. 23.

    Wang, Z. & Krupnick, A. A Retrospective Review of Shale Gas Development in the United States: What Led to the Boom? Discussion paper, RFF-DP 13-12 (Resources for the Future, 2013).

  24. 24.

    US Crude Oil and Natural Gas Proved Reserves (Energy Information Administration, 2015, accessed 12 December 2016); http://www.eia.gov/naturalgas/crudeoilreserves

  25. 25.

    Natural Gas Consumption by End Use, Texas Natural Gas Volumes Delivered to Electric Power Consumers (Energy Information Administration, accessed 12 December 2016); https://www.eia.gov/dnav/ng/ng_cons_sum_a_EPG0_veu_mmcf_m.htm

  26. 26.

    Nicot, J., Scanlon, B. R., Reedy, R. C. & Costley, R. A. Source and fate of hydraulic fracturing water in the Barnett Shale: a historical perspective. Environ. Sci. Technol. 48, 2464–2471 (2014).

  27. 27.

    Ong, S., Campbell, C., Denholm, P., Margolis, R. & Heath, G. Land-Use Requirements for Solar Power Plants in the United States (National Renewable Energy Laboratory, Golden, CO, 2013).

  28. 28.

    Ong, S., Campbell, C. & Heath, G. Land Use for Wind, Solar, and Geothermal Electricity Generation Facilities in the United States (National Renewable Energy Laboratory, 2012).

  29. 29.

    Energy Information Administration Net Generation by State by Type of Producer by Energy Source EIA-906, EIA-920, and EIA-923 (accessed 25 August 2016); http://www.eia.gov/electricity/data/state/.

  30. 30.

    Frequently Asked Questions (Texas Gas Transmission LLC, accessed 12 December 2016); www.txgt.com/Safety.aspx?id=1447

  31. 31.

    Clark, C., Han, J., Burnham, A., Dunn, J. & Wang, M. Life-Cycle Analysis of Shale Gas and Natural Gas (Argonne National Laboratory, 2012).

  32. 32.

    Williams Transco Central Penn Line South Pipeline Lifetime (accessed 12 December 2016); http://www.lancasterpipeline.org/pipeline-lifetime.

  33. 33.

    Patzek, T. W., Male, F. & Marder, M. Gas production in the Barnett Shale obeys a simple scaling theory. Proc. Natl Acad. Sci. USA 110, 19731–19736 (2013).

  34. 34.

    McGlade, C., Speirs, J. & Sorrell, S. Methods of estimating shale gas resources: Comparison, evaluation and implications. Energy 59, 116–125 (2013).

  35. 35.

    Lindeijer, E. Review of land use impact methodologies. J. Clean. Prod. 8, 273–281 (2000).

  36. 36.

    Antón, A., Castells, F. & Montero, J. Land use indicators in life cycle assessment. Case study: The environmental impact of Mediterranean greenhouses. J. Clean. Prod. 15, 432–438 (2007).

  37. 37.

    Canals, L. Mi, Clift, R., Basson, L., Hansen, Y. & Brandão, M. Expert Workshop on Land Use Impacts in Life Cycle Assessment. 12-13 June 2006 Guildford, Surrey (UK). Int. J. Life Cycle Assess. 11, 363–368 (2006).

  38. 38.

    Canals, L. Mi et al. Key elements in a framework for land use impact assessment within LCA. Int. J. Life Cycle Assess. 12, 5–15 (2007).

  39. 39.

    Hellweg, S. & Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109–1113 (2014).

  40. 40.

    De Baan, L., Alkemade, R. & Koellner, T. Land use impacts on biodiversity in LCA: a global approach. Int. J. Life Cycle Assess. 18, 1216–1230 (2013).

  41. 41.

    Koellner, T. et al. UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int. J. Life Cycle Assess. 18, 1188–1202 (2013).

  42. 42.

    Pierre, J. P., Abolt, C. J. & Young, M. H. Impacts from above-ground activities in the Eagle Ford Shale play on landscapes and hydrologic flows, La Salle County, Texas. Environ. Manage. 55, 1262–1275 (2015).

  43. 43.

    Jordaan, S. M., Keith, D. W. & Stelfox, B. Quantifying land use of oil sands production: a life cycle perspective. Environ. Res. Lett. 4, 024004 (2009).

  44. 44.

    Lindsay, G., White, D., Miller, G., Baihly, J. & Sinosic, B. Understanding the Applicability and Economic Viability of Refracturing Horizontal Wells in Unconventional Plays (SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers, 2016).

  45. 45.

    Potapenko, D. I. et al. Barnett Shale Refracture Stimulations using a Novel Diversion Technique https://doi.org/10.2118/119636-MS (SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers, 2009).

  46. 46.

    Drilling Info Desktop v.6.2.1.0. (2013, accessed 12 December 2016); info.drillinginfo.com

  47. 47.

    2009 Emissions Special Inventory Data Publication RG-360A/09 (TCEQ, 2010).

  48. 48.

    Midzuno, H. On the sampling system with probability proportionate to sum of sizes. Ann. Inst. Stat. Math. 3, 99–107 (1951).

  49. 49.

    Sen, A. R. Present status of probability sampling and its use in estimation of farm characteristics. Econometrica 20, 103 (1952).

  50. 50.

    Digital Map Data: 2009 Pipeline Data (Texas Railroad Commission, 2009, accessed 15 July 2017); http://www.rrc.state.tx.us/about-us/resource-center/research/data-sets-available-for-purchase/digital-map-data

  51. 51.

    National Pipeline Mapping System. 2009 Pipeline Data (Pipeline and Hazardous Materials Safety Administration, 2009).

  52. 52.

    Pipeline Data (Texas) (Drilling Info, accessed 12 December 2016); info.drillinginfo.com

  53. 53.

    EIA 860: Existing and Planned Generators and Associated Environmental Equipment at Electric Power Plants with 1 Megawatt or Greater of Combined Nameplate Capacity. Form EIA-860 detailed data (EPA, 2013, accessed 15 July 2017); https://www.eia.gov/electricity/data/eia860 

  54. 54.

    Oil and Gas Well Records – Online (Texas Railroad Commission, accessed 6 February 2017); http://www.rrc.state.tx.us/oil-gas/research-and-statistics/obtaining-commission-records/oil-and-gas-well-records-online

  55. 55.

    Memorandum: Change in Determination Administrative Policy for Gas Well Classification (Texas Railroad Commission, 2006, accessed 15 July 2017); http://www.rrc.state.tx.us/media/10472/02-75920-pfd-attachmtmrc.pdf

  56. 56.

    Texas Administrative Code Ch. 3, Rule 3.79 (Texas Railroad Commission, 2016, accessed 15 February 2015); http://texreg.sos.state.tx.us/public/readtac$ext.ViewTAC?tac_view=4&ti=16&pt=1&ch=3&rl

  57. 57.

    Zammerilli, A., Murray, R. C., Davis, T. & Littlefield, J. Environmental Impacts of Unconventional Natural Gas Development and Production Report DOE/NETL-2014/1651 (National Energy Technology Laboratory, 2014).

  58. 58.

    O’Sullivan, F. & Paltsev, S. Shale gas production: potential versus actual greenhouse gas emissions. Environ. Res. Lett. 7, 044030 (2012).

  59. 59.

    Lee, W. J. & Sidle, R. Gas-reserves estimation in resource plays. SPE Econom. Manage. 2, 86–91 (2010).

  60. 60.

    O’Sullivan, F. & Paltsev, S. Shale Gas Production: Potential versus Actual GHG Emissions  Report no. 234 (MIT Joint Program on the Science and Policy of Global Change, 2012).

  61. 61.

    Moré, J. J. in The Levenberg-Marquardt Algorithm: Implementation and Theory (Springer, Berlin, Heidelberg, 1978).

  62. 62.

    White Paper: The Benefits of the 8 Spectral Bands of WorldView-2 (DigitalGlobe, 2009); https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/35/DG-8SPECTRAL-WP_0.pdf

  63. 63.

    Opitz, D. & Blundell, S. In Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications Ch. 2.3 153–167 (Springer, Berlin, Heidelberg, 2008).

  64. 64.

    Schlenker, G. J. Methods for Calculating the Probability Distribution of Sums of Independent Random Variables Report 61299-600C (US Army Armament, Munitions, and Chemical Command Systems Office, Rock Island, IL, 1986).

  65. 65.

    Firestone, M. et al. Guiding Principles for Monte Carlo Analysis (Risk Assessment Forum, US Environmental Protection Agency, Washington DC, 1997).

  66. 66.

    Jordaan, I. in Decisions Under Uncertainty: Probabilistic Analysis for Engineering Decisions Ch. 9 and Ch. 11 (Cambridge University Press, New York, NY, 2005).

Download references

Acknowledgements

This work was supported by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Co-funding was provided by the Electric Power Research Institute. V. Li and A. Kasumu provided research support for the literature review and A. Miara provided support for power-plant data collection. D. Hettinger provided guidance for our GIS analysis. We would like to thank our independent, expert review panel for their thoughtful suggestions and guidance: S. Baldwin, D. Arent, G. Jersey, B. Stelfox, A. Trainor, J. P. Nicot, S. Boschetto, T. Skone, C. Freitas, S. Rose, M. Nibbelink and D. Lyon. We are grateful for our co-author Danielle’s guidance, who passed away while we were completing this manuscript.

Author information

Author notes

  1. Danielle Marceau is deceased.

Affiliations

  1. School of Advanced International Studies, Johns Hopkins University, 1619 Massachusetts Ave NW, Washington, DC, 20036, USA

    • Sarah M. Jordaan
  2. University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada

    • Sarah M. Jordaan
    • , Ehsan Mohammadi
    •  & Danielle Marceau
  3. Joint Institute for Strategic Energy Analysis, Golden, CO, 80401, USA

    • Garvin A. Heath
    • , Jordan Macknick
    • , Brian W. Bush
    • , Dan Ben-Horin
    •  & Victoria Urrea
  4. Strategic Energy Analysis Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA

    • Garvin A. Heath
    • , Jordan Macknick
    • , Brian W. Bush
    • , Dan Ben-Horin
    •  & Victoria Urrea

Authors

  1. Search for Sarah M. Jordaan in:

  2. Search for Garvin A. Heath in:

  3. Search for Jordan Macknick in:

  4. Search for Brian W. Bush in:

  5. Search for Ehsan Mohammadi in:

  6. Search for Dan Ben-Horin in:

  7. Search for Victoria Urrea in:

  8. Search for Danielle Marceau in:

Contributions

S.M.J. and G.A.H. designed the research. S.M.J., G.A.H., J.M., D.B.H., V.U., B.B. and E.M. compiled the data for the analysis and reviewed literature. S.M.J., J.M., D.B.H., V.U., B.B. and E.M. analysed data. S.M.J., G.A.H., J.M. and D.M. wrote the paper.

Competing interests

The authors declare no competing financial interest.

Corresponding author

Correspondence to Sarah M. Jordaan.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Figures 1–6, Supplementary Tables 1–7, Supplementary Notes 1–9 and Supplementary References

  2. Supplementary Data 1

    Data on each site sampled.