Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of evolvability in rapidly adapting populations

Abstract

Mutations can alter the short-term fitness of an organism, as well as the rates and benefits of future mutations. While numerous examples of these evolvability modifiers have been observed in rapidly adapting microbial populations, existing theory struggles to predict when they will be favoured by natural selection. Here we develop a mathematical framework for predicting the fates of genetic variants that modify the rates and benefits of future mutations in linked genomic regions. We derive analytical expressions showing how the fixation probabilities of these variants depend on the size of the population and the diversity of competing mutations. We find that competition between linked mutations can dramatically enhance selection for modifiers that increase the benefits of future mutations, even when they impose a strong direct cost on fitness. However, we also find that modest direct benefits can be sufficient to drive evolutionary dead ends to fixation. Our results suggest that subtle differences in evolvability could play an important role in shaping the long-term success of genetic variants in rapidly evolving microbial populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modelling indirect selection on evolvability in rapidly adapting asexual populations.
Fig. 2: Interference between linked mutations enhances indirect selection for evolvability.
Fig. 3: Trade-offs between direct and indirect selection.
Fig. 4: Indirect selection on a continuous distribution of fitness effects.
Fig. 5: Incorporating deleterious mutations and modifiers with finite mutational horizons.

Similar content being viewed by others

Data availability

Fitness measurements and confidence intervals in Fig. 1a were obtained from the Supplementary Information of ref. 8. Simulation results in the remaining figures are available in the accompanying source data files. Source data are provided with this paper.

Code availability

Source code for forward-time simulations, numerical calculations and figure generation are available via Github (https://github.com/bgoodlab/evolution_of_evolvability).

References

  1. Matic, I. et al. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277, 1833–1834 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. LeClerc, J. E., Li, B., Payne, W. L. & Cebula, T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Loeb, L. A. Human cancers express mutator phenotypes: origin, consequences and targeting. Nat. Rev. Cancer 11, 450–457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sane, M., Diwan, G. D., Bhat, B. A., Wahl, L. M. & Agashe, D. Shifts in mutation spectra enhance access to beneficial mutations. Proc. Natl Acad. Sci. USA 120, e2207355120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703–705 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Couce, A., Guelfo, J. R. & Blázquez, J. Mutational spectrum drives the rise of mutator bacteria. PLoS Genet. 9, e1003167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Freddolino, P. L., Goodarzi, H. & Tavazoie, S. Fitness landscape transformation through a single amino acid change in the rho terminator. PLoS Genet. 8, e1002744 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Woods, R. J. et al. Second-order selection for evolvability in a large Escherichia coli population. Science 331, 1433–1436 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aggeli, D., Li, Y. & Sherlock, G. Changes in the distribution of fitness effects and adaptive mutational spectra following a single first step towards adaptation. Nat. Commun. 12, 5193 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson, M. S. et al. Phenotypic and molecular evolution across 10,000 generations in laboratory budding yeast populations. Elife 10, e63910 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blount, Z. D., Borland, C. Z. & Lenski, R. E. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc. Natl Acad. Sci. USA 105, 7899–7906 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Palmer, M. E., Moudgil, A. & Feldman, M. W. Long-term evolution is surprisingly predictable in lattice proteins. J. R. Soc. Interface 10, 20130026 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barrick, J. E., Kauth, M. R., Strelioff, C. C. & Lenski, R. E. Escherichia coli rpoB mutants have increased evolvability in proportion to their fitness defects. Mol. Biol. Evol. 27, 1338–1347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karlsson, K. et al. Deterministic evolution and stringent selection during preneoplasia. Nature 618, 383–393 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Colom, B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598, 510–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fabre, M. A. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 606, 335–342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gifford, D. R. et al. Identifying and exploiting genes that potentiate the evolution of antibiotic resistance. Nat. Ecol. Evol. 2, 1033–1039 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vogwill, T., Kojadinovic, M. & MacLean, R. C. Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of pseudomonas. Proc. R. Soc. B 283, 20160151 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cummins, E. A., Snaith, A. E., McNally, A. & Hall, R. J. The role of potentiating mutations in the evolution of pandemic Escherichia coli clones. Eur. J. Clin. Microbiol. Infect. Dis. https://doi.org/10.1007/s10096-021-04359-3 (2021).

    Article  PubMed  Google Scholar 

  20. Altenberg, L., Liberman, U. & Feldman, M. W. Unified reduction principle for the evolution of mutation, migration, and recombination. Proc. Natl Acad. Sci. USA 114, E2392–E2400 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wagner, G. P. Feedback selection and the evolution of modifiers. Acta Biotheor. 30, 79–102 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Wilke, C., Wang, J. L., Ofria, C., Lenski, R. E. & Adami, C. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412, 331–333 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Payne, J. L. & Wagner, A. The causes of evolvability and their evolution. Nat. Rev. Genet. 20, 24–38 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Pigliucci, M. Is evolvability evolvable? Nat. Rev. Genet. 9, 75–82 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Hansen, T. F., Houle, D., Pavličev, M. & Pélabon, C. (eds) Evolvability: A Unifying Concept in Evolutionary Biology? (MIT Press, 2023); https://doi.org/10.7551/mitpress/14126.003.0022

  26. Good, B. H. & Desai, M. M. Evolution of mutation rates in rapidly adapting asexual populations. Genetics 204, 1249–1266 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. van Gestel, J. et al. Short-range quorum sensing controls horizontal gene transfer at micron scale in bacterial communities. Nat. Commun. 12, 2324 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Raynes, Y., Wylie, C. S., Sniegowski, P. D. & Weinreich, D. M. Sign of selection on mutation rate modifiers depends on population size. Proc. Natl Acad. Sci. USA 115, 3422–3427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tuffaha, M. Z., Varakunan, S., Castellano, D., Gutenkunst, R. N. & Wahl, L. M. Shifts in mutation bias promote mutators by altering the distribution of fitness effects. Am. Nat. 202, 503–518 (2023).

    Article  PubMed  Google Scholar 

  30. van Nimwegen, E., Crutchfield, J. P. & Huynen, M. Neutral evolution of mutational robustness. Proc. Natl Acad. Sci. USA 96, 9716–9720 (2001).

    Article  Google Scholar 

  31. Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levy, S. F. et al. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519, 181–186 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Strelkowa, N. & Lässig, M. Clonal interference in the evolution of influenza. Genetics 192, 671–682 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zanini, F. et al. Population genomics of intrapatient HIV-1 evolution. Elife 4, e11282 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rochman, N. D. et al. Ongoing global and regional adaptive evolution of SARS-CoV-2. Proc. Natl Acad. Sci. USA 118, e2104241118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kemp, S. A. et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 592, 277–282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barroso-Batista, J. et al. The first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLoS Genet. 10, e1004182 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667.e8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lieberman, T. D. et al. Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures. Nat. Genet. 46, 82–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Neher, R. A. Genetic draft, selective interference, and population genetics of rapid adaptation. Annu. Rev. Ecol. Evol. Syst. 44, 195–215 (2013).

    Article  Google Scholar 

  42. Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fisher, D. S. Asexual evolution waves: fluctuations and universality. J. Stat. Mech. Theory Exp. 2013, P01011 (2013).

    Article  Google Scholar 

  44. Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wagner, A. Evolvability-enhancing mutations in the fitness landscapes of an RNA and a protein. Nat. Commun. 14, 3624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barton, N. H. & Etheridge, A. M. The relation between reproductive value and genetic contribution. Genetics 188, 953–973 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Neher, R. A., Shraiman, B. I. & Fisher, D. S. Rate of adaptation in large sexual populations. Genetics 184, 467–481 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Birky, C. W. & Walsh, J. B. Effects of linkage on rates of molecular evolution. Proc. Natl Acad. Sci. USA 85, 6414–6418 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Keightley, P. D. & Otto, S. P. Interference among deleterious mutations favours sex and recombination in finite populations. Nature 443, 89–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Good, B. H. & Desai, M. M. Deleterious passengers in adapting populations. Genetics 198, 1183–1208 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Desai, M. M. & Fisher, D. S. Beneficial mutation–selection balance and the effect of linkage on positive selection. Genetics 176, 1759–1798 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hegreness, M., Shoresh, N., Hartl, D. & Kishony, R. An equivalence principle for the incorporation of favorable mutations in asexual populations. Science 311, 1615–1617 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen Ba, A. N. et al. High-resolution lineage tracking reveals travelling wave of adaptation in laboratory yeast. Nature 575, 494–499 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Karthikeyan, S. et al. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature 609, 101–108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Łuksza, M. & Lässig, M. A predictive fitness model for influenza. Nature 507, 57–61 (2014).

    Article  PubMed  Google Scholar 

  56. Lee, J. M. et al. Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza variants. Proc. Natl Acad. Sci. USA 115, E8276–E8285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Łuksza, M. et al. Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature 606, 389–395 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wiser, M. J., Ribeck, N. & Lenski, R. E. Long-term dynamics of adaptation in asexual populations. Science 342, 1364–1367 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Ascensao, J. A., Wetmore, K. M., Good, B. H., Arkin, A. P. & Hallatschek, O. Quantifying the local adaptive landscape of a nascent bacterial community. Nat. Commun. 14, 248 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Couce, A. et al. Changing fitness effects of mutations through long-term bacterial evolution. Science https://doi.org/10.1126/science.add1417 (2024).

  61. Frenkel, E. M., Good, B. H. & Desai, M. M. The fates of mutant lineages and the distribution of fitness effects of beneficial mutations in laboratory budding yeast populations. Genetics 196, 1217–1226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Draghi, J. A., Parsons, T. L., Wagner, G. P. & Plotkin, J. B. Mutational robustness can facilitate adaptation. Nature 463, 353–355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Johnson, M. S., Martsul, A., Kryazhimskiy, S. & Desai, M. M. Higher-fitness yeast genotypes are less robust to deleterious mutations. Science 366, 490–493 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zheng, J., Guo, N. & Wagner, A. Selection enhances protein evolvability by increasing mutational robustness and foldability. Science 370, eabb5962 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Sung, W., Ackerman, M. S., Miller, S. F., Doak, T. G. & Lynch, M. Drift-barrier hypothesis and mutation-rate evolution. Proc. Natl Acad. Sci. USA 109, 18 488–18 492 (2012).

    Article  Google Scholar 

  66. Wylie, C. S. & Shakhnovich, E. I. A biophysical protein folding model accounts for most mutational fitness effects in viruses. Proc. Natl Acad. Sci. USA 108, 9916–9921 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Archetti, M. Survival of the steepest: hypersensitivity to mutations as an adaptation to soft selection. J. Evol. Biol. 22, 740–750 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Good, B. H. & Desai, M. M. The impact of macroscopic epistasis on long-term evolutionary dynamics. Genetics 199, 177–190 (2015).

    Article  PubMed  Google Scholar 

  69. Agarwala, A. & Fisher, D. S. Adaptive walks on high-dimensional fitness landscapes and seascapes with distance-dependent statistics. Theor. Popul. Biol. 130, 13–49 (2019).

    Article  PubMed  Google Scholar 

  70. Hanage, W. P. Not so simple after all: bacteria, their population genetics, and recombination. Cold Spring Harb. Perspect. Biol. 8, a018069 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gardner, A. & Kalinka, A. T. Recombination and the evolution of mutational robustness. J. Theor. Biol. 241, 707–715 (2006).

    Article  PubMed  Google Scholar 

  72. Weissman, D. B. & Hallatschek, O. The rate of adaptation in large sexual populations with linear chromosomes. Genetics 196, 1167–1183 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Neher, R. A., Kessinger, T. A. & Shraiman, B. I. Coalescence and genetic diversity in sexual populations under selection. Proc. Natl Acad. Sci. USA 110, 15 836–15 841 (2013).

    Article  Google Scholar 

  74. Good, B. H., Walczak, A. M., Neher, R. A. & Desai, M. M. Genetic diversity in the interference selection limit. PLoS Genet. 10, e1004222 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dawson, K. J. Evolutionarily stable mutation rates. J. Theor. Biol. 194, 143–157 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Barnett, M., Zellar, L. & Rainey, P. B. Experimental evolution of evolvability. Preprint at bioRxiv https://www.biorxiv.org/content/early/2024/05/03/2024.05.01.592015 (2024).

  77. Guillaume, F. & Otto, S. P. Gene functional trade-offs and the evolution of pleiotropy. Genetics 192, 1389–1409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138, 1315–1341 (1991).

    Article  Google Scholar 

  79. Kondrashov, F. A. & Kondrashov, A. S. Multidimensional epistasis and the disadvantage of sex. Proc. Natl Acad. Sci. USA 98, 12 089–12 092 (2001).

    Article  Google Scholar 

  80. Leigh, E. G. The evolution of mutation rates. Genetics 73, Suppl 73:1–18 (1973).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Wong for useful discussions and S. Walton, O. Ghosh and Z. Liu for comments and feedback on the manuscript. This work was supported in part by the Alfred P. Sloan Foundation (FG-2021-15708) and a Terman Fellowship from Stanford University. B.H.G. is a Chan Zuckerberg Biohub San Francisco Investigator.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: J.T.F. and B.H.G.; theory and methods development: J.T.F. and B.H.G.; analysis: J.T.F. and B.H.G.; writing: J.T.F. and B.H.G.

Corresponding author

Correspondence to Benjamin H. Good.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Examples of epistatic fitness landscapes that satisfy the minimal model in Fig. 1.

(a) The evolvability modifier in Fig. 1b can be viewed as the lowest order term in a general macroscopic epistasis expansion (left, SI Section 3.1). Different fitness landscapes can produce the same macroscopic behavior. (b,c) Examples of highly epistatic fitness landscapes that satisfy the simple model above. (b) A ‘maximally epistatic’ landscape of branching uphill paths, which generalizes the model in refs. 79,80. Each step k = 1, …, K of a given path can access M L beneficial mutations; all other genotypes have fitness zero. (c) A fitness landscape formed by a non-linear combination of two global phenotypes, for example, stability, \(\Phi (\,{\overrightarrow{g}})\), and activity, \(\Psi (\,{\overrightarrow{g}})\). Individual mutations can affect both traits simultaneously (right). Stabilizing mutations can act like modifier alleles by potentiating the fitness benefits of mutations that would destabilize the protein on their own (left). In particular, a strongly stabilizing mutation can allow Kϕm/ϕ new mutations to accumulate before their effects on stability become important. See SI Section 3.1 for more details.

Extended Data Fig. 2 Deleterious mutations and indirect selection for robustness.

(a) A generalization of the simplified model in Fig. 5a, where the modifier can also shift the typical fitness cost sd. (b, c) Fixation probability of a robustness-enhancing modifier with \({U}_{d}^{{\prime} } < {U}_{d}\) (and all other parameters are held fixed). Symbols denote the results of forward time simulations for N = 108, sb = 10−2, and Ub = 10−5, while solid lines denote our theoretical predictions in SI Section 6. Panel (b) shows that the purgeable mutations approximation holds across a broad range of fitness costs, with the dashed line marking the predicted transition to quasi-neutrality (sdv/xc). Panel (c) shows that selection for increased robustness is relatively weak unless Ud sb (dashed line). (d) Fixation probability of a modifier that imposes a tradeoff between robustness and evolvability by increasing the strength of selection on beneficial and deleterious mutations simultaneously. Results are shown for sb = sd = s and Ud = 10−2, with the remaining parameters the same as panel b. Since Ud Ub, this example shows that strong selection for evolvability can occur for modifiers reduce the average fitness effect of mutations (\(\Delta \overline{s}\propto {U}_{b}\Delta s-{U}_{d}\Delta s < 0\)). (e) Fixation probability of modifier that enhances robustness and evolvability at the same, by shifting mutations from deleterious to beneficial \(({U}_{d}-{U}_{d}^{{\prime} }={U}_{b}^{{\prime} }-{U}_{b})\). Symbols denote results of forward-time simulations with sd = − 10−2 and Ud = 10−2, with the remaining parameters the same as panel (b). Lines denote our theoretical predictions in the absence of deleterious mutations (\({U}_{d}={U}_{d}^{{\prime} }=0\)). This example shows that enhancements in evolvability are weighted more strongly than comparable increases in robustness, even when nearly all new mutations are deleterious (Ub Ud).

Source data

Extended Data Fig. 3 Relaxing the assumption that modifiers permanently change the mutation spectrum.

An alternative version of the model in Fig. 5c, where the modifier reverts to an evolutionary dead-end (μm(s) = 0) after K mutations. Symbols denote the results of forward-time simulations for N = 108, sb = 10−2, and Ub = 10−5, while the line denotes our theoretical predictions for the minimal modifier model in Fig. 1b (that is K = ). Even in this extreme case, our minimal modifier model (solid line) remains highly accurate for moderate values of K, and as little as K = 1 in the quasi-sweeps regime. This demonstrates that large populations can only ‘see’ across the fitness landscape for \(\approx {x}_{cm}/{s}_{b}^{{\prime} }\) additional mutations (SI Section 7.2).

Source data

Extended Data Fig. 4 Selection for evolvability in the presence of diminishing returns epistasis.

(a, b) A simple model of global diminishing returns epistasis motivated by the empirical example in ref. 58 (SI Section 7.3). The fitness effects of new mutations shrink as the population adapts (panel a), leading to a decelerating rate of adaptation over time (panel b). Points denote the results of forward-time simulations for the distribution of fitness effects \(\mu (s|\overrightarrow{g})={U}_{b}\cdot \delta (s-{\tilde{s}}_{b}\cdot {e}^{-X(\overrightarrow{g})/\theta })\), with Ub = 10−5, \({\tilde{s}}_{b}=1{0}^{-1}\), θ = 0.2, and N = 107; points are connected by solid lines to aid visualization. (c, d) The fixation probability of an evolvability modifier that arises at the beginning of the inset in panel a, where the fitness trajectory is still decelerating. Green symbols in (c) show a selection-strength modifier with the same diminishing returns schedule as the background population (θmθ), while the blue symbols show an alternate example where the modifier avoids future diminishing returns once it arises (θm). The green line illustrates the predictions from the ‘adiabatic’ approximation in SI Section 7.3, demonstrating that the permanent modifier model [\({\mu }_{m}(s|\overrightarrow{g})\approx {\mu }_{m}(s)\)] provides a good approximation when the local selection strengths are properly renormalized. The blue line shows the predictions from our heuristic analysis in SI Section 7.3, which accounts for the additional benefits that accrue for the modifier lineage when θm θ (panel d). This example illustrates that the evolvability advantages that accrue from large differences in diminishing returns epistasis can drive modest deviations from our existing theory when θ grows close to xc.

Source data

Extended Data Table 1 Table of mathematical symbols. Definitions of mathematical symbols used in the main text, along with locations where they are used

Supplementary information

Supplementary Information

Supplementary Sections 1–8.

Reporting Summary

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrare, J.T., Good, B.H. Evolution of evolvability in rapidly adapting populations. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02527-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02527-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing