Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Growth rate as a link between microbial diversity and soil biogeochemistry

Abstract

Measuring the growth rate of a microorganism is a simple yet profound way to quantify its effect on the world. The absolute growth rate of a microbial population reflects rates of resource assimilation, biomass production and element transformation—some of the many ways in which organisms affect Earth’s ecosystems and climate. Microbial fitness in the environment depends on the ability to reproduce quickly when conditions are favourable and adopt a survival physiology when conditions worsen, which cells coordinate by adjusting their relative growth rate. At the population level, relative growth rate is a sensitive metric of fitness, linking survival and reproduction to the ecology and evolution of populations. Techniques combining omics and stable isotope probing enable sensitive measurements of the growth rates of microbial assemblages and individual taxa in soil. Microbial ecologists can explore how the growth rates of taxa with known traits and evolutionary histories respond to changes in resource availability, environmental conditions and interactions with other organisms. We anticipate that quantitative and scalable data on the growth rates of soil microorganisms, coupled with measurements of biogeochemical fluxes, will allow scientists to test and refine ecological theory and advance process-based models of carbon flux, nutrient uptake and ecosystem productivity. Measurements of in situ microbial growth rates provide insights into the ecology of populations and can be used to quantitatively link microbial diversity to soil biogeochemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods for measuring soil microbial growth rates in situ.
Fig. 2: Relative growth rates of soil microbial assemblages and individual taxa in multiple ecosystems.

Similar content being viewed by others

References

  1. Holmes, D. E. et al. Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils. Appl. Environ. Microbiol. 83, e00223-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Elser, J. J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).

    Article  Google Scholar 

  3. Wang, Y., Law, R. & Pak, B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282 (2010).

    Article  CAS  Google Scholar 

  4. Tang, K., Baskaran, V. & Nemati, M. Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem. Eng. J. 44, 73–94 (2009).

    Article  CAS  Google Scholar 

  5. Hobbie, S. E. & Vitousek, P. M. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81, 1867–1877 (2000).

    Article  Google Scholar 

  6. Bremer, H. & Dennis, P. P. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus 3, https://doi.org/10.1128/ecosal.5.2.3 (2008).

  7. King, T., Ishihama, A., Kori, A. & Ferenci, T. A regulatory trade-off as a source of strain variation in the species Escherichia coli. J. Bacteriol. 186, 5614–5620 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bergkessel, M., Basta, D. W. & Newman, D. K. The physiology of growth arrest: uniting molecular and environmental microbiology. Nat. Rev. Microbiol. 14, 549–562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cooper, T. F., Rozen, D. E. & Lenski, R. E. Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli. Proc. Natl Acad. Sci. USA 100, 1072–1077 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peyraud, R., Cottret, L., Marmiesse, L., Gouzy, J. & Genin, S. A resource allocation trade-off between virulence and proliferation drives metabolic versatility in the plant pathogen Ralstonia solanacearum. PLoS Pathog. 12, e1005939 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Martínez-García, E., Nikel, P. I., Chavarría, M. & de Lorenzo, V. The metabolic cost of flagellar motion in Pseudomonas putida KT2440. Environ. Microbiol. 16, 291–303 (2014).

    Article  PubMed  Google Scholar 

  12. Notley-McRobb, L., King, T. & Ferenci, T. rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J. Bacteriol. 184, 806–811 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Biselli, E., Schink, S. J. & Gerland, U. Slower growth of Escherichia coli leads to longer survival in carbon starvation due to a decrease in the maintenance rate. Mol. Syst. Biol. 16, e9478 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shapiro, J. W. & Turner, P. E. Evolution of mutualism from parasitism in experimental virus populations. Evolution 72, 707–712 (2018).

    Article  PubMed  Google Scholar 

  15. Hestrin, R. et al. Plant-associated fungi support bacterial resilience following water limitation. ISME J. 16, 2752–2762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Caro, T. A., McFarlin, J., Jech, S., Fierer, N. & Kopf, S. Hydrogen stable isotope probing of lipids demonstrates slow rates of microbial growth in soil. Proc. Natl Acad. Sci. USA 120, e2211625120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stone, B. W. et al. Nutrients cause consolidation of soil carbon flux to small proportion of bacterial community. Nat. Commun. 12, 3381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66, 1328–1333 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eichorst, S. A., Breznak, J. A. & Schmidt, T. M. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl. Environ. Microbiol. 73, 2708–2717 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nannipieri, P., Johnson, R. & Paul, E. Criteria for measurement of microbial growth and activity in soil. Soil Biol. Biochem. 10, 223–229 (1978).

    Article  CAS  Google Scholar 

  21. Paul, E. A. & Juma, N. G. Mineralization and immobilization of soil nitrogen by microorganisms.Ecol. Bull. 33, 179–195 (1981).

    CAS  Google Scholar 

  22. Avery, S. V., Harwood, J. L. & Lloyd, D. Quantification and characterization of phagocytosis in the soil amoeba Acanthamoeba castellanii by flow cytometry. Appl. Environ. Microbiol. 61, 1124–1132 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Okano, Y. et al. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl. Environ. Microbiol. 70, 1008–1016 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Demoling, F., Figueroa, D. & Bååth, E. Comparison of factors limiting bacterial growth in different soils. Soil Biol. Biochem. 39, 2485–2495 (2007).

    Article  CAS  Google Scholar 

  25. Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Amobonye, A., Bhagwat, P., Singh, S. & Pillai, S. Plastic biodegradation: frontline microbes and their enzymes. Sci. Total Environ. 759, 143536 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Minasny, B. et al. Soil carbon 4 per mille. Geoderma 292, 59–86 (2017).

    Article  Google Scholar 

  28. Hungate, B. A. et al. Quantitative microbial ecology through stable isotope probing. Appl. Env. Microbiol. 81, 7570–7581 (2015).

    Article  CAS  Google Scholar 

  29. Brown, C. T., Olm, M. R., Thomas, B. C. & Banfield, J. F. Measurement of bacterial replication rates in microbial communities. Nat. Biotechnol. 34, 1256–1263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caro, T.A. et al. Single-cell measurement of microbial growth rate with Raman microspectroscopy. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiae110 (2024).

  31. Meredith, L. K. et al. Consumption of atmospheric hydrogen during the life cycle of soil‐dwelling actinobacteria. Environ. Microbiol. Rep. 6, 226–238 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Pii, Y. et al. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils 51, 403–415 (2015).

    Article  CAS  Google Scholar 

  33. Coban, O., De Deyn, G. B. & van der Ploeg, M. Soil microbiota as game-changers in restoration of degraded lands. Science 375, abe0725 (2022).

    Article  PubMed  Google Scholar 

  34. Rousk, J. & Bååth, E. Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiol. Ecol. 78, 17–30 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Schnecker, J. et al. Seasonal dynamics of soil microbial growth, respiration, biomass, and carbon use efficiency in temperate soils. Geoderma 440, 116693 (2023).

    Article  CAS  Google Scholar 

  36. Kalanetra, K. M., Joye, S. B., Sunseri, N. R. & Nelson, D. C. Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. Environ. Microbiol. 7, 1451–1460 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Hood, M. A., Guckert, J. B., White, D. C. & Deck, F. Effect of nutrient deprivation on lipid, carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae. Appl. Environ. Microbiol. 52, 788–793 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spohn, M., Klaus, K., Wanek, W. & Richter, A. Microbial carbon use efficiency and biomass turnover times depending on soil depth—implications for carbon cycling. Soil Biol. Biochem. 96, 74–81 (2016).

    Article  CAS  Google Scholar 

  39. Bååth, E. Measurement of protein synthesis by soil bacterial assemblages with the leucine incorporation technique. Biol. Fertil. Soils 17, 147–153 (1994).

    Article  Google Scholar 

  40. Soares, M. & Rousk, J. Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biol. Biochem. 131, 195–205 (2019).

    Article  CAS  Google Scholar 

  41. Mumy, K. L. & Findlay, R. H. Convenient determination of DNA extraction efficiency using an external DNA recovery standard and quantitative-competitive PCR. J. Microbiol. Methods 57, 259–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Koch, B. J. et al. Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere 9, e02090 (2018).

    Article  Google Scholar 

  43. Kirchman, D. Growth rates of microbes in the oceans. Annu. Rev. Mar. Sci. 8, 285–309 (2015).

    Article  Google Scholar 

  44. Gibson, B., Wilson, D. J., Feil, E. & Eyre-Walker, A. The distribution of bacterial doubling times in the wild. Proc. R. Soc. B Biol. Sci. 285, 20180789 (2018).

    Article  Google Scholar 

  45. Liu, W. et al. Active phoD-harboring bacteria are enriched by long-term organic fertilization. Soil Biol. Biochem. 152, 108071 (2021).

    Article  CAS  Google Scholar 

  46. Dong, W. et al. Linking microbial taxa and the effect of mineral nitrogen forms on residue decomposition at the early stage in arable soil by DNA-qSIP. Geoderma 400, 115127 (2021).

    Article  CAS  Google Scholar 

  47. Li, J. et al. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 13, 2162–2172 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang, C. et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME J. 15, 2738–2747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Purcell, A. M. et al. Decreased growth of wild soil microbes after 15 years of transplant‐induced warming in a montane meadow. Glob. Change Biol. 28, 128–139 (2022).

    Article  Google Scholar 

  50. Bell, S. L. et al. Effects of warming on bacterial growth rates in a peat soil under ambient and elevated CO2. Soil Biol. Biochem. 178, 108933 (2023).

    Article  CAS  Google Scholar 

  51. Propster, J. R. et al. Distinct growth responses of tundra soil bacteria to short-term and long-term warming. Appl. Environ. Microbiol. 0, e01543-22 (2023).

    Article  Google Scholar 

  52. Blazewicz, S. J. et al. Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil. ISME J. 14, 1520–1532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dove, N. C., Taş, N. & Hart, S. C. Ecological and genomic responses of soil microbiomes to high-severity wildfire: linking community assembly to functional potential. ISME J. 16, 1853–1863 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nelson, A. R. et al. Wildfire-dependent changes in soil microbiome diversity and function. Nat. Microbiol. 7, 1419–1430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Finley, B. K. et al. Soil minerals affect taxon-specific bacterial growth. ISME J. 16, 1318–1326 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Chase, A. B., Weihe, C. & Martiny, J. B. H. Adaptive differentiation and rapid evolution of a soil bacterium along a climate gradient. Proc. Natl Acad. Sci. USA 118, e2101254118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Foley, M. M. et al. Active populations and growth of soil microorganisms are framed by mean annual precipitation in three California annual grasslands. Soil Biol. Biochem. 177, 108886 (2023).

    Article  CAS  Google Scholar 

  58. Morrissey, E. M. et al. Taxonomic patterns in the nitrogen assimilation of soil prokaryotes. Environ. Microbiol. 20, 1112–1119 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Starr, E. P. et al. Stable-isotope-informed, genome-resolved metagenomics uncovers potential cross-kingdom interactions in rhizosphere soil. mSphere 6, e0008521 (2021).

    Article  PubMed  Google Scholar 

  60. Hungate, B. A. et al. The functional significance of bacterial predators. Mbio 12, e00466-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mielke, L. et al. Nematode grazing increases the allocation of plant-derived carbon to soil bacteria and saprophytic fungi, and activates bacterial species of the rhizosphere. Pedobiologia 90, 150787 (2022).

    Article  Google Scholar 

  62. Morrissey, E. M. et al. Evolutionary history constrains microbial traits across environmental variation. Nat. Ecol. Evol. 3, 1064–1069 (2019).

    Article  PubMed  Google Scholar 

  63. Ruan, Y. et al. Elevated temperature and CO2 strongly affect the growth strategies of soil bacteria. Nat. Commun. 14, 391 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stone, B. W. et al. Nutrients strengthen density dependence of per-capita growth and mortality rates in the soil bacterial community. Oecologia 201, 771–782 (2023).

    Article  PubMed  Google Scholar 

  65. Stone, B. W. G. et al. Life history strategies among soil bacteria—dichotomy for few, continuum for many. ISME J. 17, 611–619 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Morrissey, E. M. et al. Carbon acquisition ecological strategies to connect soil microbial biodiversity and carbon cycling. Soil Biol. Biochem. 177, 108893 (2023).

    Article  CAS  Google Scholar 

  67. Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Sokol, N. W. et al. The path from root input to mineral-associated soil carbon is dictated by habitat-specific microbial traits and soil moisture. Soil Biol. Biochem. 193, 109367 (2024).

    Article  CAS  Google Scholar 

  69. Rudgers, J. A. et al. Climate disruption of plant–microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).

    Article  Google Scholar 

  70. Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

    Article  Google Scholar 

  71. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Angst, G., Mueller, K. E., Nierop, K. G. & Simpson, M. J. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol. Biochem. 156, 108189 (2021).

    Article  CAS  Google Scholar 

  73. Ludwig, M. et al. Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils. Soil Biol. Biochem. 81, 311–322 (2015).

    Article  CAS  Google Scholar 

  74. Chang, Y. et al. A stoichiometric approach to estimate sources of mineral-associated soil organic matter. Glob. Change Biol. 30, e17092 (2024).

    Article  Google Scholar 

  75. Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pold, G. et al. Carbon use efficiency and its temperature sensitivity covary in soil bacteria. mBio 11, e02293-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Marschmann, G. L. et al. Predictions of rhizosphere microbiome dynamics with a genome-informed and trait-based energy budget model. Nat. Microbiol. 9, 421–433 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wieder, W., Grandy, S., Kallenbach, C., Bonan, B. & Integrating, G. Microbial physiology and physiochemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences 11, 3899–3917 (2014).

    Article  Google Scholar 

  79. Wang, G. et al. Microbial dormancy improves development and experimental validation of ecosystem model. ISME J. 9, 226–237 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Tang, J. & Riley, W. J. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat. Clim. Change 5, 56–60 (2015).

    Article  CAS  Google Scholar 

  81. Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. & Pacala, S. W. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat. Clim. Change 4, 1099–1102 (2014).

    Article  CAS  Google Scholar 

  82. Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J. & Torn, M. S. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nat. Commun. 8, 1223 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981–985 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).

    Article  PubMed  Google Scholar 

  86. Westoby, M. et al. Trait dimensions in bacteria and archaea compared to vascular plants. Ecol. Lett. 24, 1487–1504 (2021).

    Article  PubMed  Google Scholar 

  87. Prosser, J. I. & Martiny, J. B. H. Conceptual challenges in microbial community ecology. Phil. Trans. R. Soc. B Biol. Sci. 375, 20190241 (2020).

    Article  Google Scholar 

  88. Malik, A. A. et al. Drought and plant litter chemistry alter microbial gene expression and metabolite production. ISME J. 14, 2236–2247 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Bonkowski, M. Protozoa and plant growth: the microbial loop in soil revisited. New Phytol. 162, 617–631 (2004).

    Article  PubMed  Google Scholar 

  91. Wilhelm, R. C., Singh, R., Eltis, L. D. & Mohn, W. W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 13, 413–429 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).

    Article  PubMed  Google Scholar 

  93. Rousk, J. Biomass or growth? How to measure soil food webs to understand structure and function. Soil Biol. Biochem. 102, 45–47 (2016).

    Article  CAS  Google Scholar 

  94. Maxfield, P. J., Dildar, N., Hornibrook, E. R. C., Stott, A. W. & Evershed, R. P. Stable isotope switching (SIS): a new stable isotope probing (SIP) approach to determine carbon flow in the soil food web and dynamics in organic matter pools. Rapid Commun. Mass Spectrom. 26, 997–1004 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. DeRito, C. M., Pumphrey, G. M. & Madsen, E. L. Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Appl. Environ. Microbiol. 71, 7858–7865 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maxfield, P. J., Hornibrook, E. R. C. & Evershed, R. P. Estimating high-affinity methanotrophic bacterial biomass, growth, and turnover in soil by phospholipid fatty acid 13C labeling. Appl. Environ. Microbiol. 72, 3901–3907 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lueders, T., Pommerenke, B. & Friedrich, M. W. Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl. Environ. Microbiol. 70, 5778–5786 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vogt, C. et al. Stable isotope probing approaches to study anaerobic hydrocarbon degradation and degraders. J. Mol. Microbiol. Biotechnol. 26, 195–210 (2016).

    CAS  PubMed  Google Scholar 

  99. Li, Z. et al. Genome-resolved proteomic stable isotope probing of soil microbial communities using 13CO2 and 13C-methanol. Front. Microbiol. 10, 2706 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Morris, S. A., Radajewski, S., Willison, T. W. & Murrell, J. C. Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Appl. Environ. Microbiol. 68, 1446–1453 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate discussion with members of the Center for Ecosystem Science and Society and Lawrence Livermore National Laboratory (LLNL) Soil Microbiome Scientific Focus Area team. This work was supported by grants from the US Department of Energy’s (DOE’s) Biological Systems Science Division Program in Genomic Science (DE-SC0020172 and DE-SC0023126) and the DOE’s Office of Biological and Environmental Research Genomic Science Program (LLNL Microbes Persist Soil Microbiome Scientific Focus Area SCW1632). A.P. is grateful for support from the National Science Foundation (NSF; 1643871). B.W.G.S. is grateful for support from the Linus Pauling Distinguished Postdoctoral Fellowship programme through the Pacific Northwest National Laboratory. E.M. is grateful for support from the NSF (2114570) and D.O.E.’s Biological Systems Science Division Program in Genomic Science (SC0016207). M.M.F. is grateful for support from the DOE’s Science Graduate Student Research Program. Work at the LLNL was conducted under the auspices of the US DOE under contract DE-AC52-07NA27344. N.F. is grateful for support from the NSF (AW5809-826664).

Author information

Authors and Affiliations

Authors

Contributions

M.M.F., B.J.K., T.A.C., N.F. and B.A.H. conceived of the study idea. M.M.F., B.W.G.S., B.J.K. and B.A.H. designed the study methodology and performed the formal analysis. M.M.F., B.W.G.S., B.J.K., S.J.B., P.D., M.H., K.H., B.K.F., J.M., R.L.M., V.M.-Q., E.M., J.P., A.P. and N.F. performed the investigation. M.M.F., B.W.G.S. and B.A.H. curated the data. M.M.F. and B.A.H. visualized the data. S.J.B., K.H., E.M., E.S., J.P.-R. and B.A.H. acquired the funding. S.J.B., K.H., E.M., E.S., J.P.-R. and B.A.H. provided resources. J.P.-R. and B.A.H. supervised the project and performed project administration. M.M.F., B.J.K., T.A.C., N.W.S., N.F. and B.A.H. wrote the manuscript. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Megan M. Foley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Carla Cruz-Paredes, Jörg Schnecker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods and Tables 1 and 2.

Supplementary Data 1

Published estimates of in situ growth rates of soil microbial assemblages.

Supplementary Data 2

Published estimates of in situ growth rates of soil bacterial phyla measured via H218O qSIP.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foley, M.M., Stone, B.W.G., Caro, T.A. et al. Growth rate as a link between microbial diversity and soil biogeochemistry. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02520-7

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology