Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Identification of old coding regions disproves the hominoid de novo status of genes

The Original Article was published on 26 August 2024

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ENSG00000205704 encodes a hominoid-specific de novo protein.

Data availability

The mass spectrometry data from this study have been deposited to PRIDE24 with the dataset identifier PXD053929. Public Ribo-seq datasets re-analysed in this study are summarized in Supplementary Table 1 (for ENSG00000205704) and http://test.rhesusbase.com/denovo (for the 74 de novo genes from An et al.2). Ribosome profiles derived from GWIPS-viz (https://gwips.ucc.ie/cgi-bin/hgTracks?db=hg38) were integrated from sub-tracks, including Clamer 2018, Fijalkowska 2017, Gao 2014 and Gawron 2016.

Code availability

The codes and pipelines from this study have been published previously and are cited in the Supplementary Methods. Multiple sequence alignments were extracted from https://hgdownload.soe.ucsc.edu/downloads.html.

References

  1. Leushkin, E. & Kaessmann, H. Identification of old coding regions disproves hominoid de novo status of genes. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-024-02513-6 (2024).

  2. An, N. A. et al. De novo genes with an lncRNA origin encode unique human brain developmental functionality. Nat. Ecol. Evol. 7, 264–278 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Knowles, D. G. & McLysaght, A. Recent de novo origin of human protein-coding genes. Genome Res. 19, 1752–1759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, D. D., Irwin, D. M. & Zhang, Y. P. De novo origin of human protein-coding genes. PLoS Genet. 7, 1752–1759 (2011).

    Article  Google Scholar 

  5. Xie, C. et al. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs. PLoS Genet. 8, e1002942 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, J. Y. et al. Emergence, retention and selection: a trilogy of origination for functional de novo proteins from ancestral lncRNAs in primates. PLoS Genet. 11, e1005391 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang, Y. E., Landback, P., Vibranovski, M. & Long, M. New genes expressed in human brains: implications for annotating evolving genomes. BioEssays 34, 982–991 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Li, C. Y. et al. A human-specific de novo protein-coding gene associated with human brain functions. PLoS Comput. Biol. 6, e1000734 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Papamichos, S. I., Margaritis, D. & Kotsianidis, I. Adaptive evolution coupled with retrotransposon exaptation allowed for the generation of a human-protein-specific coding gene that promotes cancer cell proliferation and metastasis in both haematological malignancies and solid tumours: the extraordinary case of MYEOV gene. Scientifica 2015, 984706 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kovaka, S., Ou, S., Jenike, K. M. & Schatz, M. C. Approaching complete genomes, transcriptomes and epi-omes with accurate long-read sequencing. Nat. Methods 20, 12–16 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toll-Riera, M. et al. Origin of primate orphan genes: a comparative genomics approach. Mol. Biol. Evol. 26, 603–612 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Deutsch, E. W. et al. The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. 45, D1100–D1106 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Craig, R., Cortens, J. P. & Beavis, R. C. The use of proteotypic peptide libraries for protein identification. Rapid Commun. Mass Spectrom. 19, 1844–1850 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Duffy, E. E. et al. Developmental dynamics of RNA translation in the human brain. Nat. Neurosci. 25, 1353–1365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez, C. et al. Ribosome profiling reveals a cell-type-specific translational landscape in brain tumors. J. Neurosci. 34, 10924–10936 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Grabole, N. et al. Genomic analysis of the molecular neuropathology of tuberous sclerosis using a human stem cell model. Genome Med. 8, 94 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang, Z. Y. et al. Transcriptome and translatome co-evolution in mammals. Nature 588, 642–647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, P. et al. Genome-wide identification and differential analysis of translational initiation. Nat. Commun. 8, 1749 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fija-Lkowska, D. et al. EIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs. Nucleic Acids Res. 45, 7997–8013 (2017).

    Article  CAS  Google Scholar 

  21. Sandmann, C. L. et al. Evolutionary origins and interactomes of human, young microproteins and small peptides translated from short open reading frames. Mol. Cell 83, 994–1011.e18 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gray, T. A., Saitoh, S. & Nicholls, R. D. An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc. Natl Acad. Sci. USA 96, 5616–5621 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gallaher, S. D. et al. Widespread polycistronic gene expression in green algae. Proc. Natl Acad. Sci. USA 118, e2017714118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2021).

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.-Y.L., B.H. and N.A.A. designed the study. C.X. performed most of the computational analyses. Q.X., C.Y., T.L., J.-Y.C. and L.Z. performed part of the analyses. F.M., Y.L., Q.X., J.Q., X.L. and T.G. performed the experiments. C.-Y.L., C.X., N.A.A. and B.H. wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Baoyang Hu, Ni A. An or Chuan-Yun Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Sebastiaan van Heesch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1 and 2 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, C., Mo, F., Lu, Y. et al. Reply to: Identification of old coding regions disproves the hominoid de novo status of genes. Nat Ecol Evol 8, 1831–1834 (2024). https://doi.org/10.1038/s41559-024-02515-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02515-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing