Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Soil health is associated with higher primary productivity across Europe

A Publisher Correction to this article was published on 04 September 2024

This article has been updated

Abstract

Soil health is expected to be of key importance for plant growth and ecosystem functioning. However, whether soil health is linked to primary productivity across environmental gradients and land-use types remains poorly understood. To address this gap, we conducted a pan-European field study including 588 sites from 27 countries to investigate the link between soil health and primary productivity across three major land-use types: woodlands, grasslands and croplands. We found that mean soil health (a composite index based on soil properties, biodiversity and plant disease control) in woodlands was 31.4% higher than in grasslands and 76.1% higher than in croplands. Soil health was positively linked to cropland and grassland productivity at the continental scale, whereas climate best explained woodland productivity. Among microbial diversity indicators, we observed a positive association between the richness of Acidobacteria, Firmicutes and Proteobacteria and primary productivity. Among microbial functional groups, we found that primary productivity in croplands and grasslands was positively related to nitrogen-fixing bacteria and mycorrhizal fungi and negatively related to plant pathogens. Together, our results point to the importance of soil biodiversity and soil health for maintaining primary productivity across contrasting land-use types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographic distribution across the European continent of the 588 locations used in this study.
Fig. 2: Relationship between soil health and primary productivity.
Fig. 3: Relative importance of main predictors (top ten) for primary productivity.
Fig. 4: SEM describing direct and indirect effects of climate, edaphic factors and soil biodiversity on primary productivity across different land-use types.

Similar content being viewed by others

Data availability

The raw data (DNA sequences) used in this study can be found in the SRA database under BioProject ID PRJNA952168. A dataset including detailed information on each individual sampling site used in this study (n = 588) is available at https://doi.org/10.6084/m9.figshare.26272657 (ref. 77).

Code availability

R scripts designed for data analyses and figure production are available at https://github.com/fromerob/Romero-et-al-2024-Soil-Health.git.

Change history

References

  1. Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Qiao, L. et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Change 12, 574–580 (2022).

    Article  Google Scholar 

  3. Bünemann, E. K. et al. Soil quality—a critical review. Soil Biol. Biochem. 120, 105–125 (2018).

    Article  Google Scholar 

  4. Banerjee, S. & van der Heijden, M. G. A. Soil microbiomes and one health. Nat. Rev. Microbiol. 21, 6–20 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M. & Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 116, 61–76 (2003).

    Article  CAS  Google Scholar 

  6. Maron, J. L., Marler, M., Klironomos, J. N. & Cleveland, C. C. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol. Lett. 14, 36–41 (2011).

    Article  PubMed  Google Scholar 

  7. Tilak, K. V. B. R. et al. Diversity of plant growth and soil health supporting bacteria. Curr. Sci. 89, 136–150 (2005).

    CAS  Google Scholar 

  8. Toda, M., Walder, F. & van der Heijden, M. G. A. Organic management and soil health promote nutrient use efficiency. J. Sustain. Agric. Environ. 2, 215–224 (2023).

  9. Shah, A. N. et al. Soil compaction effects on soil health and crop productivity: an overview. Environ. Sci. Pollut. Res. 24, 10056–10067 (2017).

    Article  Google Scholar 

  10. Kibblewhite, M. G., Ritz, K. & Swift, M. J. Soil health in agricultural systems. Philos. Trans. R. Soc. B 363, 685–701 (2008).

    Article  CAS  Google Scholar 

  11. Panagos, P. et al. Soil priorities in the European Union. Geoderma Reg. 29, e00510 (2022).

    Article  Google Scholar 

  12. Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T. & Eshel, G. Soil health assessment: a critical review of current methodologies and a proposed new approach. Sci. Total Environ. 648, 1484–1491 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476 (2014).

    Article  Google Scholar 

  14. Krishna, M. P. & Mohan, M. Litter decomposition in forest ecosystems: a review. Energy Ecol. Environ. 2, 236–249 (2017).

    Article  Google Scholar 

  15. Wang, J. et al. Vegetation type controls root turnover in global grasslands. Glob. Ecol. Biogeogr. 28, 442–455 (2019).

    Article  CAS  Google Scholar 

  16. Gill, R. A. & Jackson, R. B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147, 13–31 (2000).

    Article  Google Scholar 

  17. Labouyrie, M. et al. Patterns in soil microbial diversity across Europe. Nat. Commun. 14, 3311 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kindler, R. et al. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob. Change Biol. 17, 1167–1185 (2011).

    Article  Google Scholar 

  19. Nouri, A., Lukas, S., Singh, S., Singh, S. & Machado, S. When do cover crops reduce nitrate leaching? A global meta-analysis. Glob. Change Biol. 28, 4736–4749 (2022).

    Article  CAS  Google Scholar 

  20. Bauer, J. T., Kleczewski, N. M., Bever, J. D., Clay, K. & Reynolds, H. L. Nitrogen-fixing bacteria, arbuscular mycorrhizal fungi and the productivity and structure of prairie grassland communities. Oecologia 170, 1089–1098 (2012).

    Article  PubMed  Google Scholar 

  21. van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present and the future. New Phytol. 205, 1406–1423 (2015).

    Article  PubMed  Google Scholar 

  22. Gujre, N., Soni, A., Rangan, L., Tsang, D. C. W. & Mitra, S. Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: a review. Environ. Pollut. 268, 115549 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Liang, Y., Pan, F., He, X., Chen, X. & Su, Y. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region. Environ. Sci. Pollut. Res. 23, 18482–18491 (2016).

    Article  CAS  Google Scholar 

  24. Guerra, C. A. et al. Tracking, targeting and conserving soil biodiversity. Science 371, 239–241 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Heintz-Buschart, A. et al. Microbial diversity–ecosystem function relationships across environmental gradients. Res. Ideas Outcomes 6, e52217 (2020).

    Article  Google Scholar 

  26. Couto, W. in Handbook of Agricultural Productivity (ed. Rechcigl, M.) 71–84 (CRC Press, 2018).

  27. Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).

    Article  CAS  Google Scholar 

  28. Kielak, A. M., Cipriano, M. A. P. & Kuramae, E. E. Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch. Microbiol. 198, 987–993 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sikorski, J. et al. The evolution of ecological diversity in Acidobacteria. Front. Microbiol. 13, 78 (2022).

    Article  Google Scholar 

  30. Fan, K. et al. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J. 15, 550–561 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Hashmi, I., Bindschedler, S. & Junier, P. in Beneficial Microbes in Agro-Ecology (eds Amaresan, N. et al.) 363–396 (Academic Press, 2020); https://doi.org/10.1016/B978-0-12-823414-3.00018-6

  33. van de Vossenberg, B. T. L. H., Prodhomme, C., Vossen, J. H. & van der Lee, T. A. J. Synchytrium endobioticum, the potato wart disease pathogen. Mol. Plant Pathol. 23, 461–474 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 718 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Xu, S. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity–ecosystem functioning experiments. Proc. R. Soc. B 287, 20202063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Osburn, E. D., Yang, G., Rillig, M. C. & Strickland, M. S. Evaluating the role of bacterial diversity in supporting soil ecosystem functions under anthropogenic stress. ISME Commun. 3, 66 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. 16, 1327–1336 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krause, A. et al. Quantifying the impacts of land cover change on gross primary productivity globally. Sci. Rep. 12, 18398 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Collalti, A. et al. Forest production efficiency increases with growth temperature. Nat. Commun. 11, 5322 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morin, X. et al. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Sci. Rep. 8, 5627 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Walder, F. et al. Synergism between production and soil health through crop diversification, organic amendments and crop protection in wheat-based systems. J. Appl. Ecol. 60, 2091–2104 (2023).

    Article  CAS  Google Scholar 

  43. Delgado-Baquerizo, M. et al. Microbial richness and composition independently drive soil multifunctionality. Funct. Ecol. 31, 2330–2343 (2017).

    Article  Google Scholar 

  44. Sünnemann, M. et al. Climate change and cropland management compromise soil integrity and multifunctionality. Commun. Earth Environ. 4, 394 (2023).

    Article  Google Scholar 

  45. Wagg, C., Jansa, J., Stadler, M., Schmid, B. & van der Heijden, M. G. A. Mycorrhizal fungal identity and diversity relaxes plant–plant competition. Ecology 92, 1303–1313 (2011).

    Article  PubMed  Google Scholar 

  46. van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).

    Article  Google Scholar 

  47. Lutz, S. et al. Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nat. Microbiol. 8, 2277–2289 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018).

    Article  Google Scholar 

  49. Orgiazzi, A. et al. LUCAS Soil Biodiversity and LUCAS Soil Pesticides, new tools for research and policy development. Eur. J. Soil Sci. 73, e13299 (2022).

    Article  Google Scholar 

  50. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Tedersoo, L. & Anslan, S. Towards PacBio‐based pan‐eukaryote metabarcoding using full‐length ITS sequences. Environ. Microbiol Rep. 11, 659–668 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Özkurt, E. et al. LotuS2: an ultrafast and highly accurate tool for amplicon sequencing analysis. Microbiome 10, 176 (2022).

  54. Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Pertea, G. fqtrim: v0. 9.4 release. Zenodo https://doi.org/10.5281/zenodo.20552 (2015).

  57. Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Tedersoo, L. et al. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers. 111, 573–588 (2021).

    Article  Google Scholar 

  59. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinf. 10, 421 (2009).

  60. Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).

    Article  Google Scholar 

  63. Liu, S. et al. Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nat. Ecol. Evol. 6, 900–909 (2022).

    Article  PubMed  Google Scholar 

  64. Ballabio, C. et al. Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma 355, 113912 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Smith, L. C. et al. Large‐scale drivers of relationships between soil microbial properties and organic carbon across Europe. Glob. Ecol. Biogeogr. 30, 2070–2083 (2021).

    Article  Google Scholar 

  66. Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fan, K. et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nat. Ecol. Evol. 7, 113–126 (2023).

    Article  PubMed  Google Scholar 

  68. Running, S. W., Nemani, R., Glassy, J. M. & Thornton, P. E. MODIS daily photosynthesis (PSN) and annual net primary production (NPP) product (MOD17). Algorithm Theoretical Basis Document (Univ. Montana,1999); www.umt.edu/numerical-terradynamic-simulation-group/files/modis/atbd_mod17_v21.pdf

  69. Ballabio, C., Panagos, P. & Monatanarella, L. Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma 261, 110–123 (2016).

    Article  Google Scholar 

  70. Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).

    Article  PubMed  Google Scholar 

  71. Rillig, M. C. et al. Increasing the number of stressors reduces soil ecosystem services worldwide. Nat. Clim. Change 13, 478–483 (2023).

    Article  Google Scholar 

  72. Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).

    Article  PubMed  Google Scholar 

  73. Eisenhauer, N., Bowker, M. A., Grace, J. B. & Powell, J. R. From patterns to causal understanding: structural equation modeling (SEM) in soil ecology. Pedobiologia 58, 65–72 (2015).

    Article  Google Scholar 

  74. Wei, T. & Simko, V. corrplot: Visualization of a correlation matrix. R package version 0.84. GitHub https://github.com/taiyun/corrplot (2017).

  75. Archer, E. rfPermute: estimate permutation p-values for random forest importance metrics. R package version 1. CRAN http://CRAN.R-project.org/package=rfPermute (2016).

  76. Lefcheck, J., Byrnes, J. & Grace, J. piecewiseSEM: piecewise structural equation modeling. R package version 2.1.2. CRAN https://cloud.r-project.org/web/packages/piecewiseSEM/piecewiseSEM.pdf (2020).

  77. Romero, F. Soil health is associated with higher primary productivity across Europe. figshare https://doi.org/10.6084/m9.figshare.26272657.v1 (2024).

Download references

Acknowledgements

M.G.A.v.d.H. and F.R. acknowledge funding from the Swiss National Science Foundation through grant no. 310030-188799 and from the European Union Horizon 2020 research and innovation programme under grant agreement no. 862695 EJP SOIL-MINOTAUR. We also acknowledge J. Muñoz-Liesa for support with figure production. N.E. acknowledges funding by the Deutsche Forschungsgemeinschaft DFG (German Centre for Integrative Biodiversity Research, FZT118; and Gottfried Wilhelm Leibniz Prize, Ei 862/29-1; Ei 862/31-1). M.D.-B. acknowledges support from TED2021-130908B-C41/AEI/10.13039/501100011033/NextGenerationEU/PRTR and from the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. The LUCAS survey is coordinated by Unit E4 of the Statistical Office of the European Union (EUROSTAT). The LUCAS soil sample collection is supported by the Directorate‐General Environment, Directorate‐General Agriculture and Rural Development and Directorate‐General Climate Action of the European Commission. M.L. works under the framework of the Collaborative Doctoral Partnership agreement no. 35594 between the European Commission Joint Research Centre and University of Zürich.

Author information

Authors and Affiliations

Authors

Contributions

M.G.A.v.d.H. and F.R. conceptualised and designed the study. A.O., P.P. and A.J. initiated the LUCAS survey. M.L., L.T. and M.B. generated or processed the sequencing data. F.R., M.L., D.T. and C.B. conducted statistical analyses (investigation and visualization). C.B. calculated primary productivity values for each site. M.G.A.v.d.H., A.O., P.P. and A.J. handled project administration. F.R. and M.G.A.v.d.H. wrote the original draft. F.R., M.L., A.O., C.B., P.P., A.J., L.T., M.B., C.A.G., N.E., D.T., M.D.-B., P.G.-P. and M.G.A.v.d.H. contributed to reviewing and editing of the final manuscript.

Corresponding authors

Correspondence to Ferran Romero or Marcel G. A. van der Heijden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks James Grace, Rasmus Kjøller and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Tables 1–5.

Reporting Summary

Supplementary Data

Dataset with information on individual sampling sites.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, F., Labouyrie, M., Orgiazzi, A. et al. Soil health is associated with higher primary productivity across Europe. Nat Ecol Evol 8, 1847–1855 (2024). https://doi.org/10.1038/s41559-024-02511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02511-8

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene