Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extremely acidic proteomes and metabolic flexibility in bacteria and highly diversified archaea thriving in geothermal chaotropic brines

Abstract

Few described archaeal, and fewer bacterial, lineages thrive under salt-saturating conditions, such as solar saltern crystallizers (salinity above 30% w/v). They accumulate molar K+ cytoplasmic concentrations to maintain osmotic balance (‘salt-in’ strategy) and have proteins adaptively enriched in negatively charged acidic amino acids. Here we analysed metagenomes and metagenome-assembled genomes from geothermally influenced hypersaline ecosystems with increasing chaotropicity in the Danakil Depression. Normalized abundances of universal single-copy genes confirmed that haloarchaea and Nanohaloarchaeota encompass 99% of microbial communities in the near-life-limiting conditions of the Western-Canyon Lakes. Danakil metagenome- and metagenome-assembled-genome-inferred proteomes, compared with those of freshwater, seawater and solar saltern ponds up to saturation (6–14–32% salinity), showed that Western-Canyon Lake archaea encode the most acidic proteomes ever observed (median protein isoelectric points ≤4.4). We identified previously undescribed haloarchaeal families as well as an Aenigmatarchaeota family and a bacterial phylum independently adapted to extreme halophily. Despite phylum-level diversity decreasing with increasing salinity–chaotropicity, and unlike in solar salterns, adapted archaea exceedingly diversified in Danakil ecosystems, challenging the notion of decreasing diversity under extreme conditions. Metabolic flexibility to utilize multiple energy and carbon resources generated by local hydrothermalism along feast-and-famine strategies seemingly shapes microbial diversity in these ecosystems near life limits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbial community composition inferred from metagenomes of polyextreme chaotropic ecosystems in the north Danakil Depression.
Fig. 2: pI and amino acid compositional biases of inferred proteomes for microorganisms thriving in increasingly chaotropic ecosystems from the north Danakil Depression.
Fig. 3: Diversity indexes for all species and dominant archaeal taxa in Danakil geothermally influenced chaotropic brines compared with other ecosystems of increasing salinity.
Fig. 4: Phylogenomic trees of newly identified archaeal and bacterial MAGs in hypersaline chaotropic north Danakil ecosystems.
Fig. 5: Major processes involved in energy metabolism in microbial communities from Danakil polyextreme brine ecosystems.

Similar content being viewed by others

Data availability

Metagenomes and MAGs are available in GenBank under Bioproject PRJNA541281. The accession numbers for individual metagenomes are SAMN37693137 (DAL-Ass), SAMN37693138 (DAL-9Ass), SAMN37693139 (DAL-9Gt), SAMN37693140 (DAL-WCL2) and SAMN37693141 (DAL-WCL3). Accession numbers for MAGs are provided in Supplementary Table 5. Reference databases used include Pfam-A database v.3.1b2 (http://pfam.xfam.org/), UniProtKB-SwissProt (05.2022); https://www.expasy.org/resources/uniprotkb-swiss-prot), KOfams developed by KEGG (https://www.genome.jp/tools/kofamkoala/), GTDB r214 (https://gtdb.ecogenomic.org/) and CAZyDB (release 09242021; http://www.cazy.org/).

Code availability

Custom code for these analyses (perl and R scripts) is available via GitLab at https://gitlab.com/DeemTeam/dal-metagenomes.

References

  1. Oren, A. The ecology of extremely halophilic archaea. FEMS Microbiol. Rev. 13, 415–440 (1994).

    Article  CAS  Google Scholar 

  2. Lee, C. J. D. et al. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol. Rev. 42, 672–693 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Baker, B. A. et al. Several independent adaptations of archaea to hypersaline environments. Nat. Microbiol 9, 964–975 (2023).

    Article  Google Scholar 

  4. Narasingarao, P. et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 6, 81–93 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Dombrowski, N., Lee, J. H., Williams, T. A., Offre, P. & Spang, A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol. Lett. 366, fnz008 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sorokin, D. Y. et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol 2, 17081 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou, H. et al. Metagenomic insights into the environmental adaptation and metabolism of Candidatus Haloplasmatales, one archaeal order thriving in saline lakes. Environ. Microbiol. 24, 2239–2258 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Oren, A. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63, 334–348 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gunde-Cimerman, N., Plemenitaš, A. & Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 42, 353–375 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Oren, A. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front. Microbiol. 4, 315 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Harding, T. & Simpson, A. G. B. Recent advances in halophilic protozoa research. J. Eukaryot. Microbiol. 65, 556–570 (2018).

    Article  PubMed  Google Scholar 

  13. Legault, B. A. et al. Environmental genomics of ‘Haloquadratum walsbyi’ in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genomics 7, 171 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Anton, J., Rossello-Mora, R., Rodriguez-Valera, F. & Amann, R. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol. 66, 3052–3057 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oren, A. Salinibacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol. Lett. 342, 1–9 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Mongodin, E. F. et al. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl Acad. Sci. USA 102, 18147–18152 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stevenson, A. et al. Is there a common water-activity limit for the three domains of life? ISME J. 9, 1333–1351 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Hallsworth, J. E. et al. Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ. Microbiol. 9, 801–813 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Belilla, J. et al. Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat. Ecol. Evol. 3, 1552–1561 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Belilla, J. et al. Active microbial airborne dispersal and biomorphs as confounding factors for life detection in the cell-degrading brines of the polyextreme Dallol geothermal field. mBio 13, e0030722 (2022).

    Article  PubMed  Google Scholar 

  21. Varet, J. in Geology of Afar (East Africa). Regional Geology Reviews (eds Oberhänsli, R., de Wit, M. J. & Roure, F. M.) Ch. 7, 205–226 (Springer, 2018).

  22. Rime, V., Foubert, A., Ruch, J. & Kidane, T. Tectonostratigraphic evolution and significance of the Afar Depression. Earth Sci. Rev. 244, 104519 (2023).

    Article  Google Scholar 

  23. Kotopoulou, E. et al. A polyextreme hydrothermal system controlled by iron: the case of Dallol at the Afar Triangle. ACS Earth Space Chem. 3, 90–99 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. López-García, J. M., Moreira, D., Benzerara, K., Grunewald, O. & López-García, P. Origin and evolution of the halo-volcanic complex of Dallol: proto-volcanism in Northern Afar (Ethiopia). Front. Earth Sci. 7, 351 (2020).

    Article  Google Scholar 

  25. Belilla, J. et al. Archaeal overdominance close to life-limiting conditions in geothermally influenced hypersaline lakes at the Danakil Depression, Ethiopia. Environ. Microbiol. 23, 7168–7182 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. López-García, P. et al. Metagenome-derived virus-microbe ratios across ecosystems. ISME J. 17, 1552–1156 (2023).

    Article  PubMed  Google Scholar 

  27. David, G. M. et al. Small freshwater ecosystems with dissimilar microbial communities exhibit similar temporal patterns. Mol. Ecol. 30, 2162–2177 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Ghai, R. et al. Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME J. 4, 1154–1166 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Ghai, R. et al. New abundant microbial groups in aquatic hypersaline environments. Sci. Rep. 1, 135 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Paul, S., Bag, S. K., Das, S., Harvill, E. T. & Dutta, C. Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol. 9, R70 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kastritis, P. L., Papandreou, N. C. & Hamodrakas, S. J. Haloadaptation: insights from comparative modeling studies of halophilic archaeal DHFRs. Int. J. Biol. Macromol. 41, 447–453 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Tadeo, X. et al. Structural basis for the aminoacid composition of proteins from halophilic archea. PLoS Biol. 7, e1000257 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. López-García, P. in Lectures in Astrobiology Vol. I (eds Gargaud, M., Barbier, B., Martin, H. & Reisse, J.) 657–679 (Springer, 2005).

  35. Stetter, K. O. Hyperthermophilic prokaryotes. FEMS Microbiol. Rev. 18, 149–158 (1996).

    Article  CAS  Google Scholar 

  36. Stetter, K. O. Extremophiles and their adaptation to hot environments. FEBS Lett. 452, 22–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Takai, K. et al. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. USA 105, 10949–10954 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–d794 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Durán-Viseras, A., Sánchez-Porro, C., Viver, T., Konstantinidis, K. T. & Ventosa, A. Discovery of the streamlined haloarchaeon Halorutilus salinus, comprising a new order widespread in hypersaline environments across the world. mSystems 8, e01198–01122 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vavourakis, C. D. et al. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines. Front. Microbiol. 7, 211 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl Acad. Sci. USA 102, 2567–2572 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Darrah, T. H. et al. Gas chemistry of the Dallol region of the Danakil Depression in the Afar region of the northern-most East African Rift. Chem. Geol. 339, 16–29 (2013).

    Article  CAS  Google Scholar 

  44. Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Beam, J. P. et al. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Front. Microbiol. 11, 1848 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. La Cono, V. et al. Symbiosis between nanohaloarchaeon and haloarchaeon is based on utilization of different polysaccharides. Proc. Natl Acad. Sci. USA 117, 20223–20234 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Reva, O. et al. Functional diversity of nanohaloarchaea within xylan-degrading consortia. Front. Microbiol. 14, 1182464 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Trojan, D. et al. Microaerobic lifestyle at nanomolar O2 concentrations mediated by low-affinity terminal oxidases in abundant soil bacteria. mSystems https://doi.org/10.1128/msystems.00250-00221 (2021).

  49. Torregrosa-Crespo, J. et al. Anaerobic metabolism in haloferax genus: denitrification as case of study. Adv. Microb. Physiol. 68, 41–85 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. Usa. 113, 12792–12796 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cardoso, R. B. et al. Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol. Bioeng. 95, 1148–1157 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Weber, K. A., Achenbach, L. A. & Coates, J. D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 4, 752–764 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Albright, M. B. N., Timalsina, B., Martiny, J. B. H. & Dunbar, J. Comparative genomics of nitrogen cycling pathways in bacteria and archaea. Microb. Ecol. 77, 597–606 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Kappelmann, L. et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 13, 76–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Naumoff, D. G. GHL1-GHL15: new families of the hypothetical glycoside hydrolases. Mol. Biol. 45, 983–992 (2011).

    Article  CAS  Google Scholar 

  58. Shao, Z. & Wang, W. Enzymes and genes involved in aerobic alkane degradation. Front. Microbiol. 4, 116 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. Lapébie, P., Lombard, V., Drula, E., Terrapon, N. & Henrissat, B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat. Commun. 10, 2043 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Garron, M. L. & Henrissat, B. The continuing expansion of CAZymes and their families. Curr. Opin. Chem. Biol. 53, 82–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Jeilu, O., Simachew, A., Alexandersson, E., Johansson, E. & Gessesse, A. Discovery of novel carbohydrate degrading enzymes from soda lakes through functional metagenomics. Front. Microbiol. 13, 1059061 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Simó-Cabrera, L. et al. Haloarchaea as cell factories to produce bioplastics. Mar. Drugs 19, 159 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jorgensen, B. B. & Boetius, A. Feast and famine–microbial life in the deep-sea bed. Nat. Rev. Microbiol. 5, 770–781 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Favreau, C. et al. Molecular acclimation of Halobacterium salinarum to halite brine inclusions. Front. Microbiol. 13, 1075274 (2022).

    Article  PubMed  Google Scholar 

  65. Dal Bello, M., Lee, H., Goyal, A. & Gore, J. Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism. Nat. Ecol. Evol. 5, 1424–1434 (2021).

    Article  PubMed  Google Scholar 

  66. Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic interactions and the drivers of microbial community assembly. Curr. Biol. 30, R1176–r1188 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Hedlund, B. P. et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat. Microbiol 7, 1702–1708 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  75. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vegan: Community Ecology Package. R package version 1.17-9. R Project http://CRAN.R-project.org/package=vegan (2011).

  77. Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. CoverM: read coverage calculator for metagenomics (version 0.7.0). GitHub https://github.com/wwood/CoverM (2024).

  83. Rodriguez-R, L. M. & Konstantinidis, K. T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Preprint at https://doi.org/10.7287/peerj.preprints.1900v1 (2016).

  84. Petitjean, C., Deschamps, P., Lopez-Garcia, P., Moreira, D. & Brochier-Armanet, C. Extending the conserved phylogenetic core of archaea disentangles the evolution of the third domain of life. Mol. Biol. Evol. 32, 1242–1254 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. R: A language and environment for statistical computing. R Foundation for Statistical Computing http://www.r-project.org (2021).

  93. Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Priest, T., Vidal-Melgosa, S., Hehemann, J.-H., Amann, R. & Fuchs, B. M. Carbohydrates and carbohydrate degradation gene abundance and transcription in Atlantic waters of the Arctic. ISME Commun. 3, 130 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Nayfach, S. & Pollard, K. S. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 16, 51 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Brenckman and the Iris Foundation for supporting our initial field trip in 2016 and the Mamont Foundation, for field trip support in 2019. We thank J. Belilla, J. M. López-García, A. I. López-Archilla, K. Benzerara, L. Jardillier, O. Grunewald, L. Cantamessa and the Afar authorities for their assistance during field trips and P. Deschamps for help with software installation. This work was supported by the Moore-Simons Project on the Origin of the Eukaryotic Cell (P.L.-G., https://doi.org/10.37807/GBMF9739), the Iris Foundation (P.L.-G., https://en.fondationiris.org/) and the European Research Council Starting Grant Macro-Epik (L.E., no. 803151) and Advanced Grant Plast-Evol (D.M., no. 787904).

Author information

Authors and Affiliations

Authors

Contributions

P.L.-G. and D.M. organized the field trips, collected and conditioned samples, designed the research and obtained funding to conduct it. A.G.-P. carried out the bioinformatic, phylogenetic and statistical analyses from raw metagenome data. B.D. and A.G.-P. investigated genes involved in metabolism. B.B. and L.E. carried out the final phylogenomic analysis for Halobacteria and Nanohaloarchaeota. P.L.-G. conceptualized and supervised the research, and wrote the manuscript. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Purificación López-García.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Ibrahim Farag, Eric Weingarten and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Genus-level composition of dominant archaeal phyla in polyextreme ecosystems in the north Danakil Depression.

a, Composition of members ascribing to the Halobacteriota. b, Composition of members ascribing to the Nanohaloarchaeota. Classification according to GTDB r214.

Extended Data Fig. 2 Arginine preference over lysine in north Danakil extreme halophilic communities.

a, Percentage of arginine and lysine in proteomes inferred from Danakil polyextreme ecosystems in comparison with representative ecosystems along a salinity gradient. b, Jitter plot showing Arg/Lys (R/K) ratio inferred from MAGs of Danakil chaotropic brines classified by major taxa. Tukey HSD one-sided test performed to compare those values for the indicated pairs of taxa. ***p-value < 0.001, ****p-value < 0.0001. Statistical details are shown in Supplementary Table 4.

Extended Data Fig. 3 Isoelectric point (pI) and amino acid biases in MAGs assembled from polyextreme brines in the north Danakil Depression.

a, Distribution of pI values in individual MAGs assembled from Lake Assale (Ass, 9Ass), cave reservoir La Grotte (9Gt) and Western Canyon Lakes (WCLs) metagenomes. b, PCA of amino acid composition and individual MAGs retrieved from polyextreme north Danakil ecosystems. c, Asp-Glu/Ile-Lys (DE/IK) ratio in the assembled MAGs. MAGs are colored according to their taxonomic affiliation. Symbol shapes denote the type of hypersaline ecosystem the MAGs were assembled from.

Extended Data Fig. 4 Isoelectric point of proteomes inferred for archaeal and bacterial lineages present in north Danakil hypersaline systems independently adapted to hypersaline conditions.

a, Distribution of pI values in individual MAGs belonging to the Aenigmarchaeota order PWEA01, including the Dallol area MAGs (reddish color), and its phylogenetic relatives (blue colors) as reference. b, Violin plots showing pI values for Danakil MAGs belonging to the Bacteroidota, including references for comparison. Note the low pI values characteristic of the extremely halophilic Salinibacteraceae. c, Distribution of pI values shown by curves (left) and violin plot (right) of MAGs ascribing to the phylum T1Sed10-126 (Candidatus Salsurabacteriota), including the three genomes assembled from the Dallol area ecosystems and the two existing reference genomes from GTDB. The black dot in the violin plots shown in b-c depicts the median.

Extended Data Fig. 5 Heat maps showing major metabolic potential functions and KEGG pathways for individual Halobacteria MAGs assembled from north Danakil hypersaline ecosystems.

a, Presence (blue)-absence (white) of metabolic functions as inferred by Metabolic G in Danakil MAGs and representative GTDB genomes of Halobacteria. b, Modules of KEGG pathways identified in Halobacteria MAGs and GTDB reference genomes (outgroup). The blue color intensity indicates the completeness of the respective pathway (intense, complete). The names of our MAGs are highlighted in red. Aa, amino acid.

Extended Data Fig. 6 Relative abundance and phylogenetic classification of key genes of the reverse tricarboxylic acid (rTCA) and Wood-Ljungdahl C fixation pathways in Danakil metagenomes.

2-oxoglutarate synthase, pyruvate synthase and citrate lyase are characteristic rTCA enzymes; the CO dehydrogenase/acetyl-CoA synthase is considered diagnostic for the Wood-Ljungdahl pathway.

Extended Data Fig. 7 Heat maps showing major metabolic potential functions and KEGG pathways for individual Nanohaloarchaeota MAGs assembled from north Danakil hypersaline ecosystems.

a, Presence (blue)-absence (white) of metabolic functions as inferred by Metabolic G in Danakil MAGs and representative GTDB genomes of Nanohaloarchaeota. b, Modules of KEGG pathways identified in Nanohaloarchaeota MAGs and GTDB reference genomes (outgroup). The blue color intensity indicates the completeness of the pathway. The names of our MAGs are highlighted in orange. Aa, amino acid; ox. phosphor., oxidative phosphorylation.

Extended Data Fig. 8 Heat maps showing major metabolic potential functions and KEGG pathways for MAGs of the halophilic candidate bacterial phylum Salsurabacteriota (T1Sed10-126).

a, Presence-absence of metabolic functions as inferred by Metabolic G in the two most complete Danakil MAGs and known GTDB genomes. b, Modules of KEGG pathways identified in Salsurabacteriota. The names of our MAGs are highlighted in green.

Extended Data Fig. 9 Heat map showing the relative abundance of genes encoding enzymes involved in the degradation of hydrocarbons (alkanes and haloalkanes) and carbohydrates in metagenomes from north Danakil hypersaline ecosystems.

GH, glycoside hydrogenases (involved in carbohydrate degradation).

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–13 and Tables 1–7 in pdf format. Additional Supplementary Tables 8–13 are too large and are provided in a combined Excel file with all tables.

Reporting Summary

Peer Review File

Supplementary Table

This file contains Supplementary Tables 8–13. The legends are included in each table tab.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Preciado, A., Dede, B., Baker, B.A. et al. Extremely acidic proteomes and metabolic flexibility in bacteria and highly diversified archaea thriving in geothermal chaotropic brines. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02505-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02505-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing