Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Latitudinal gradients in seed predation persist in urbanized environments

Abstract

Urbanization is creating a new global biome, in which cities and suburbs around the world often resemble each other more than the local natural areas they replaced. But while urbanization can profoundly affect ecology at local scales, we know little about whether it disrupts large-scale ecological patterns. Here we test whether urbanization disrupts a macroecological pattern central to ecological and evolutionary theory: the increase in seed predation intensity from high to low latitudes. Across 14,000 km of latitude spanning the Americas, we compared predation intensity on two species of standardized experimental seeds in urbanized and natural areas. In natural areas, predation on both seed species increased fivefold from high latitudes to the tropics, one of the strongest latitudinal gradients in species interactions documented so far. Surprisingly, latitudinal gradients in predation were equally strong in urbanized areas despite significant habitat modification. Nevertheless, urbanization did affect seed predation. Compared with natural areas, urbanization reduced overall predation and vertebrate predation, did not affect predation by invertebrates in general, and increased predation by ants. Our results show that macroecological patterns in predation intensity can persist in urbanized environments, even as urbanization alters the relative importance of predators and potentially the evolutionary trajectory of urban populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Site locations and characteristics.
Fig. 2: Latitudinal gradients in seed predation in natural and urbanized areas.
Fig. 3: Effect of urbanization on observed seed predators.
Fig. 4: Experimental sites.

Similar content being viewed by others

Data availability

Data used in analyses are publicly available on Borealis, the Canadian Dataverse Repository at https://doi.org/10.5683/SP3/I5DWFQ ref. 69.

Code availability

R code for analyses and figures are also publicly available on Borealis69.

References

  1. Darwin, C. On the Origin of Species by Natural Selection (J. Murray, 1859).

  2. Hargreaves, A. L. Geographic gradients in species interactions: from latitudinal patterns to ecological mechanisms. Annu. Rev. Ecol. Evol. Syst. (in the press).

  3. Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).

    Article  Google Scholar 

  4. Dobzhansky, T. Evolution in the tropics. Am. Sci. 38, 209–221 (1950).

    Google Scholar 

  5. MacArthur, R. H. Geographical Ecology: Patterns in the Distributions of Species (Princeton Univ. Press, 1972).

  6. McKinnon, L. et al. Lower predation risk for migratory birds at high latitudes. Science 327, 326–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Paquette, A. & Hargreaves, A. L. Biotic interactions are more often important at species’ warm vs. cool range edges. Ecol. Lett. 24, 2427–2438 (2021).

    Article  PubMed  Google Scholar 

  8. Connell, J. H. in Dynamics of Populations Vol. 298 (eds den Boer, P. J. & Gradwell, G. R.) 298–312 (Centre for Agricultural Publishing and Documentation, 1971).

  9. Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).

    Article  Google Scholar 

  10. Schemske, D. In Speciation and Patterns of Diversity (ed. Feeley, K. J.) 219–239 (Cambridge Univ. Press, 2009).

  11. Jeanne, R. L. A latitudinal gradient in rates of ant predation. Ecology 60, 1211–1224 (1979).

    Article  Google Scholar 

  12. Ashton, G. V. et al. Predator control of marine communities increases with temperature across 115 degrees of latitude. Science 376, 1215–1219 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Hargreaves, A. L. et al. Seed predation increases from the Arctic to the Equator and from high to low elevations. Sci. Adv. 5, eaau4403 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Radwan, T. M., Blackburn, G. A., Whyatt, J. D. & Atkinson, P. M. Global land cover trajectories and transitions. Sci. Rep. 11, 12814 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, G. D. et al. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nat. Commun. 13, 1628 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Santangelo, J. S. et al. Global urban environmental change drives adaptation in white clover. Science 375, 1275–1281 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014).

  18. Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: a meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).

    Article  Google Scholar 

  19. Bateman, P. W. & Fleming, P. A. Big city life: carnivores in urban environments. J. Zool. 287, 1–23 (2012).

    Article  Google Scholar 

  20. Chatelain, M., Rudisser, J. & Traugott, M. Urban-driven decrease in arthropod richness and diversity associated with group-specific changes in arthropod abundance. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2023.980387 (2023).

  21. Shochat, E., Stefanov, W. L., Whitehouse, M. E. A. & Faeth, S. H. Urbanization and spider diversity: influences of human modification of habitat structure and productivity. Ecol. Appl. 14, 268–280 (2004).

    Article  Google Scholar 

  22. van Dijk, L. J. et al. Urbanization affects oak–pathogen interactions across spatial scales. Ecography https://doi.org/10.1111/ecog.06091 (2022).

  23. Smith, H. M., Dickman, C. R. & Banks, P. B. Exotic black rats increase invertebrate Ordinal richness in urban habitat remnants. Biol. Invasions 19, 1315–1328 (2017).

    Article  Google Scholar 

  24. Liang, H., He, Y.-D., Theodorou, P. & Yang, C.-F. The effects of urbanisation on pollinators and pollination: a meta-analysis. Ecol. Lett. 26, 1629–1642 (2023).

    Article  PubMed  Google Scholar 

  25. Theodorou, P. The effects of urbanisation on ecological interactions. Curr. Opin. Insect Sci. 52, 100922 (2022).

    Article  PubMed  Google Scholar 

  26. Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126 (2015).

    Article  PubMed  Google Scholar 

  27. Bellocq, M., Leveau, L. & Filloy, J. in Ecology and Conservation of Birds in Urban Environments (eds Murgui, E. & Hedblom, M.) 35–54 (Springer, 2017).

  28. McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).

    Article  Google Scholar 

  29. Pautasso, M. et al. Global macroecology of bird assemblages in urbanized and semi-natural ecosystems. Glob. Ecol. Biogeogr. 20, 426–436 (2011).

    Article  Google Scholar 

  30. Perez, A. et al. Urbanisation dampens the latitude–diversity cline in ants. Insect Conserv. Divers. 15, 763–771 (2022).

    Article  Google Scholar 

  31. Rodriguez-Campbell, A. What drives the intensity of species interactions? A distributed experiment from the Arctic to Patagonia. MSc thesis, McGill University (2023).

  32. Brown, C. D. & Vellend, M. Non-climatic constraints on upper elevational plant range expansion under climate change. Proc. R. Soc. B 281, 20141779 (2014).

  33. Hulme, P. E. Post-dispersal seed predation: consequences for plant demography and evolution. Perspect. Plant Ecol. Evol. Syst. 1, 32–46 (1998).

    Article  Google Scholar 

  34. Germain, R. M. et al. Spatial variability in plant predation determines the strength of stochastic community assembly. Am. Nat. 182, 169–179 (2013).

    Article  PubMed  Google Scholar 

  35. Coley, P. D. & Kursar, T. A. On tropical forests and their pests. Science 343, 35–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Cheptou, P.-O., Carrue, O., Rouifed, S. & Cantarel, A. Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc. Natl Acad. Sci. USA 105, 3796–3799 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao, J. & O’Neill, B. C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 11, 2302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Knop, E. Biotic homogenization of three insect groups due to urbanization. Glob. Change Biol. 22, 228–236 (2016).

    Article  Google Scholar 

  39. Barnagaud, J. Y. et al. Biogeographical, environmental and anthropogenic determinants of global patterns in bird taxonomic and trait turnover. Glob. Ecol. Biogeogr. 26, 1190–1200 (2017).

    Article  Google Scholar 

  40. Filloy, J., Grosso, S. & Bellocq, M. I. Urbanization altered latitudinal patterns of bird diversity–environment relationships in the southern Neotropics. Urban Ecosyst. 18, 777–791 (2015).

    Article  Google Scholar 

  41. Griffith, J. Urbanization Dampens the Latitudinal Diversity Gradient in Birds. MSc thesis, McGill University (2024).

  42. Whalen, M. A. et al. Climate drives the geography of marine consumption by changing predator communities. Proc. Natl Acad. Sci. USA 117, 28160–28166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roesti, M. et al. Pelagic fish predation is stronger at temperate latitudes than near the equator. Nat. Commun. 11, 1527 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee, A. T. K., Ottosson, U., Jackson, C., Shema, S. & Reynolds, C. Urban areas have lower species richness, but maintain functional diversity: insights from the African Bird Atlas Project. Ostrich 92, 1–15 (2021).

    Article  Google Scholar 

  45. Szabo, B. et al. Urbanization decreases species richness, and increases abundance in dry climates whereas decreases in wet climates: a global meta-analysis. Sci. Total Environ. 859, 160145 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Freeman, B. G., Scholer, M. N., Boehm, M. M. A., Heavyside, J. & Schluter, D. Adaptation and latitudinal gradients in species interactions: nest predation in birds. Am. Nat. 196, E160–E166 (2020).

    Article  PubMed  Google Scholar 

  47. Martin, E. & Hargreaves, A. L. Gradients in the time seeds take to germinate could alter global patterns in predation strength. J. Biogeogr. 50, 884–896 (2023).

    Article  Google Scholar 

  48. Matthies, S. A., Ruter, S., Schaarschmidt, F. & Prasse, R. Determinants of species richness within and across taxonomic groups in urban green spaces. Urban Ecosyst. 20, 897–909 (2017).

    Article  Google Scholar 

  49. Rivkin, L. R., Johnson, R. A., Chaves, J. A. & Johnson, M. T. Urbanization alters interactions between Darwin’s finches and Tribulus cistoides on the Galápagos Islands. Ecol. Evol. 11, 15754–15765 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Palacio, F. X., Siepielski, A. M., Lacoretz, M. V. & Ordano, M. Selection on fruit traits is mediated by the interplay between frugivorous birds, fruit flies, parasitoid wasps and seed‐dispersing ants. J. Evol. Biol. 33, 874–886 (2020).

    Article  PubMed  Google Scholar 

  51. Miles, L. S., Breitbart, S. T., Wagner, H. H. & Johnson, M. T. Urbanization shapes the ecology and evolution of plant-arthropod herbivore interactions. Front. Ecol. Evol. 7, 310 (2019).

    Article  Google Scholar 

  52. Leveau, L. United colours of the city: a review about urbanisation impact on animal colours. Austral Ecol. 46, 670–679 (2021).

    Article  Google Scholar 

  53. Buczkowski, G. & Richmond, D. S. The effect of urbanization on ant abundance and diversity: a temporal examination of factors affecting biodiversity. PLoS ONE 7, e41729 (2012).

  54. Gibb, H. et al. Climate mediates the effects of disturbance on ant assemblage structure. Proc. R. Soc. B 282, 20150418 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Miczajka, V. L., Klein, A.-M. & Pufal, G. Slug activity density increases seed predation independently of an urban–rural gradient. Basic Appl. Ecol. 39, 15–25 (2019).

    Article  Google Scholar 

  56. Magle, S. B. et al. Wealth and urbanization shape medium and large terrestrial mammal communities. Glob. Change Biol. 27, 5446–5459 (2021).

    Article  CAS  Google Scholar 

  57. Leveau, L. M., Leveau, C. M., Villegas, M., Cursach, J. A. & Suazo, C. G. Bird communities along urbanization gradients: a comparative analysis among three Neotropical cities. Ornitol. Neotrop. 28, 77–87 (2017).

  58. Batáry, P., Kurucz, K., Suarez‐Rubio, M. & Chamberlain, D. E. Non‐linearities in bird responses across urbanization gradients: a meta‐analysis. Glob. Change Biol. 24, 1046–1054 (2018).

    Article  Google Scholar 

  59. Guiry, E. & Buckley, M. Urban rats have less variable, higher protein diets. Proc. R. Soc. B 285, 20181441 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lakatos, T., Chamberlain, D. E., Garamszegi, L. Z. & Batary, P. No place for ground-dwellers in cities: a meta-analysis on bird functional traits. Glob. Ecol. Conserv. 38, e02217 (2022).

    Google Scholar 

  61. Gámez, S. et al. Downtown diet: a global meta-analysis of increased urbanization on the diets of vertebrate predators. Proc. R. Soc. B 289, 20212487 (2022).

    Article  PubMed  Google Scholar 

  62. Martin, E., El‐Galmady, S. & Johnson, M. T. Urban socioeconomic variation influences the ecology and evolution of trophic interactions. Ecol. Lett. 27, e14407 (2024).

    Article  PubMed  Google Scholar 

  63. Davis, A. & Raghu, S. Weighing abiotic and biotic influences on weed seed predation. Weed Res. 50, 402–412 (2010).

    Article  Google Scholar 

  64. Alberti, M. in Advances in Urban Ecology: Integrating Humans and Ecological Processes in Urban Ecosystems 61–92 (Springer, 2008).

  65. Larios, L., Pearson, D. E. & Maron, J. L. Incorporating the effects of generalist seed predators into plant community theory. Funct. Ecol. 31, 1856–1867 (2017).

    Article  Google Scholar 

  66. Peco, B., Laffan, S. W. & Moles, A. T. Global patterns in post-dispersal seed removal by invertebrates and vertebrates. PLoS ONE 9, e91256 (2014).

    Article  PubMed  Google Scholar 

  67. Chen, S. C., Hemmings, F. A., Chen, F. & Moles, A. T. Plants do not suffer greater losses to seed predation towards the tropics. Glob. Ecol. Biogeogr. 26, 1283–1291 (2017).

    Article  Google Scholar 

  68. R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).

  69. Hargreaves, A. L. Data and code for Hargreaves et al 2024 Latitudinal gradients in predation persist in urbanized areas. McGill University Dataverse https://doi.org/10.5683/SP3/I5DWFQ (2024).

  70. Bolker, B. M. in Ecological Statistics: Contemporary Theory and Application (eds Fox, G. A. et al.) 309–333 (Oxford Univ. Press, 2015).

  71. Lenth, R. & Lenth, M. R. Package ‘lsmeans’. Am. Stat. 34, 216–221 (2018).

    Google Scholar 

  72. Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56–71 (2017).

    Article  Google Scholar 

  73. Thein, M. M., Wu, L. M., Corlett, R. T., Quan, R. C. & Wang, B. Changes in seed predation along a 2300‐m elevational gradient on a tropical mountain in Myanmar: a standardized test with 32 non‐native plant species. Ecography 44, 602–611 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Morales, M. MacLaren, V. Javidi, P. Caissy, C. Mulder, P. Hargreaves and F. Baccaro for contributing experimental runs; J. Lane, M. Moffat, J. Best, P. Gomes, B. Ricci and A. Iglesias for help with fieldwork; and É. Charbonneau, É. Meunier, C. Ostiguy, E. and M. Lafond, Gault Nature Reserve for access to sampling sites. The primary funding for this BIG experiment was from an NSERC discovery grant, McGill Liber Ero Conservation Fund grant, and NFRF-R grant to A.L.H. We also acknowledge support from an NSERC graduate scholarship (E.M.); MITACs award (A.R.-C.); NSERC and McGill undergraduate summer research awards (K.L., A.P., V. Javidi, M. Maclaren); and FONCyT (PICT 2019 00969) and CONICET (PIBAA 2022-2023) to M. Chiuffo.

Author information

Authors and Affiliations

Authors

Contributions

Authors are listed in order of contribution. A.L.H. designed and coordinated the study, analysed the data and wrote the manuscript. All authors contributed to fieldwork, except O.R.; O.R. and K.L. developed greenness methods and collected greenness data. E.D.-G. made cages and shipped standardized seeds to collaborators in the USA. O.R., J. Burkiewicz, S.H., M.B.B.-B., E.M., M.L.C., T.L.S., M.C.C., I.J.M.TG., S.K.-N., L.P., S.J., K.M., J.F.B., B.F., J.L. and E.S. helped edit the manuscript.

Corresponding author

Correspondence to Anna L. Hargreaves.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Diana López and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Separate models per predation types vs. one overall model for all predation types.

Top row is the same as Fig. 2, and shows results from 1 model per predation type (column a: total predation by vertebrates and invertebrates, measured using uncaged sunflower seeds; column b: predation by invertebrates only, measured using sunflower seeds caged to exclude vertebrate predators; column c: predation by mostly vertebrates, measured using oat seeds), each with fixed effects Latitude × Urbanization + Elevation. Bottom row shows results from a single overall model including all predation types, with fixed effects Latitude × Urbanization × Predation type + Elevation. Overall conclusions are the same (full statistical results in Extended Data Table 1). Thick lines, shaded polygons and points show means, 95% CI, and partial residuals, respectively. Sample sizes are as in Fig. 2: 156 experimental runs at 36 natural sites and 181 runs at 45 urbanized sites, with 2912, 2394, and 2718 seed depots measuring total, invertebrate, and vertebrate predation, respectively.

Extended Data Fig. 2 Seed predation declined toward higher elevations.

While our study was not designed to test for elevational patterns in seed predation (unlike13, which systematically sampled across elevations within each latitude), we included elevation as a covariate in all analyses of seed predation to account for its effects, and it was always significant (Extended Data Table 3). Elevational trends (mean ± 95% CI) and partial residuals are extracted from one binomial GLMM per predation type (fixed effects: Latitude (absolute) × Urbanization (categorical) + Elevation), plotted for the median absolute latitude (45.0°). While we did not test for interactions between elevation and other fixed effects, we have plotted the elevational trends separately for natural (a) and urbanized (b) sites for illustration. Statistical results in Extended Data Table 3).

Extended Data Table 1 Ground vegetation and local greenness in natural vs. urbanized sites
Extended Data Table 2 Sample sizes
Extended Data Table 3 Analyses of different data structures yielded consistent results about whether urbanization affects latitudinal patterns in seed predation
Extended Data Table 4 Seed predator observations varied with urbanization and latitude
Extended Data Table 5 Relative fit and explanatory power of different measures of greenness
Extended Data Table 6 Effect of ground vegetation type on seed predation in urbanized sites

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hargreaves, A.L., Ensing, J., Rahn, O. et al. Latitudinal gradients in seed predation persist in urbanized environments. Nat Ecol Evol 8, 1897–1906 (2024). https://doi.org/10.1038/s41559-024-02504-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02504-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing