Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Synergies and complementarities between ecosystem accounting and the Red List of Ecosystems

Abstract

Safeguarding biodiversity and human well-being depends on sustaining ecosystems. Two global standards for quantifying ecosystem change, the International Union for Conservation of Nature Red List of Ecosystems (RLE) and the United Nations System of Environmental-Economic Accounting Ecosystem Accounting (EA), underpin headline indicators for the Kunming–Montreal Global Biodiversity Framework. We analyse similarities and differences between the standards to understand their complementary roles in environmental policy and decision-making. The standards share key concepts, definitions of ecosystems and spatial data needs, meaning that similar data can be used in both. Their complementarities stem from their differing purposes and thus how data are analysed and interpreted. Although both record changes in ecosystem extent and condition, the RLE analyses the magnitude of change in terms of risk of ecosystem collapse and biodiversity loss, whereas EA links ecosystem change with the ecosystem’s contributions to people and the economy. We recommend that the RLE and EA should not be treated as unrelated nor undertaken in isolation. Developing them in concert can exploit their complementarities while ensuring consistency in foundational data, in particular ecosystem classifications, maps and condition variables. Finding pathways for co-investment in foundational data, and for knowledge-sharing between people and organizations who undertake RLE assessments and accounting, will improve both processes and outcomes for biodiversity, ecosystems and people.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A conceptual model of key ecosystem features, ecological processes, threats and dependent ecosystem services in the Mesoamerican Reef.
Fig. 2: The SA-NECS provides the foundation for RLE assessments and ecosystem accounts.

Similar content being viewed by others

References

  1. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers Report No. 3947851138 (IPBES, 2019).

  2. Nicholson, E. et al. Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework. Nat. Ecol. Evol. 5, 1338–1349 (2021).

    Article  PubMed  Google Scholar 

  3. Mace, G. M., Hails, R. S., Cryle, P., Harlow, J. & Clarke, S. J. Towards a risk register for natural capital. J. Appl. Ecol. 52, 641–653 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kunming-Montreal Global Biodiversity Framework (CBD/COP/15/L.25) (Convention on Biological Diversity, 2022).

  5. Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

    Article  PubMed  Google Scholar 

  6. Keith, D. A. et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 8, e62111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria, Version 2.0 (IUCN, 2024).

  8. Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review (HM Treasury, 2021).

  9. Edens, B. et al. Establishing the SEEA Ecosystem Accounting as a global standard. Ecosyst. Serv. 54, 101413 (2022).

    Article  Google Scholar 

  10. Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Talberth, J. & Weisdorf, M. Genuine Progress Indicator 2.0: pilot accounts for the US, Maryland, and City of Baltimore 2012–2014. Ecol. Econ. 142, 1–11 (2017).

    Article  Google Scholar 

  12. Inclusive Wealth Report 2012: Measuring Progress Towards Sustainability (UNEP, UNU-IHDP, 2012).

  13. Ouyang, Z. et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl Acad. Sci. USA 117, 14593–14601 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bland, L. M. et al. Impacts of the IUCN Red List of Ecosystems on conservation policy and practice. Conserv. Lett. 12, e12666 (2019).

    Article  Google Scholar 

  15. Nicholson, E. et al. Roles of the Red List of Ecosystems in the Kunming-Montreal Global Biodiversity Framework. Nat. Ecol. Evol. 8, 614–621 (2024).

    Article  PubMed  Google Scholar 

  16. Lequiller, F. & Blades, D. Understanding National Accounts (OECD Publishing, 2014).

  17. UN. System of Environmental-Economic Accounting 2012—Central Framework (UN, EC, FAO, IMF, OECD, World Bank, 2014).

  18. System of Environmental-Economic Accounting—Ecosystem Accounting (SEEA EA) (UN, 2021).

  19. Monitoring Framework for the Kunming-Montreal Global Biodiversity Framework (CBD/COP/DEC/15/5) (Convention on Biological Diversity, 2022).

  20. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Duncan, C., Thompson, J. R. & Pettorelli, N. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships. Proc. R. Soc. B https://doi.org/10.1098/rspb.2015.1348 (2015).

  22. Mönkkönen, M. et al. More wood but less biodiversity in forests in Finland: a historical evaluation. Memo. Soc. Fauna Flora Fenn. 98, 1–11 (2022).

    Google Scholar 

  23. Botts, E. A. et al. More than just a (red) list: over a decade of using South Africa’s threatened ecosystems in policy and practice. Biol. Conserv. 246, 108559 (2020).

    Article  Google Scholar 

  24. Salomaa, A. & Arponen, A. The role of the Red Lists of Ecosystems in leveraging sustainability changes in Finland—perceptions of the assessors. Ecosyst. People 19, 2222185 (2023).

    Article  Google Scholar 

  25. Keith, H., Vardon, M., Stein, J. A., Stein, J. L. & Lindenmayer, D. Ecosystem accounts define explicit and spatial trade-offs for managing natural resources. Nat. Ecol. Evol. 1, 1683–1692 (2017).

    Article  PubMed  Google Scholar 

  26. King, S. et al. Linking biodiversity into national economic accounting. Environ. Sci. Policy 116, 20–29 (2021).

    Article  Google Scholar 

  27. Keith, D. A. et al. A function-based typology for Earth’s ecosystems. Nature 610, 513–518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Report on the Fifty-Fifth Session (27 February–1 March 2024) E/2024/24-E/CN.3/2024/37 (United Nations Statistical Commission, 2024).

  29. AHTEG. Guidance on Using the Indicators of the Monitoring Framework of the Kunming-Montreal Global Biodiversity Framework, from the Ad Hoc Technical Expert Group on Indicators for the Kunming-Montreal Global Biodiversity Framework (CBD/SBSTTA/26/INF/14) (Convention on Biological Diversity, 2024).

  30. Norwegian Red List for Ecosystems and Habitat Types 2018 (Norwegian Biodiversity Information Centre, 2018).

  31. Driver, A., Turpie, J., Bouwer, G. & Ginsburg, A. Land and terrestial ecosystem accounts in South Africa: exploring the ecosystem extent index and ecosystem condition index. ResearchGate https://www.researchgate.net/publication/360139784_Land_and_terrestrial_ecosystem_accounts_in_South_Africa_Exploring_the_Ecosystem_Extent_Index_and_Ecosystem_Condition_Index (2020).

  32. Skowno, A. L. et al. National Biodiversity Assessment 2018: The Status of South Africa’s Ecosystems and Biodiversity—Synthesis Report Report No. 1928224342 (South African National Biodiversity Institute, an entity of the Department of Environment, Forestry and Fisheries, 2019).

  33. Venter, Z. S., Barton, D. N., Chakraborty, T., Simensen, T. & Singh, G. Global 10 m land use land cover datasets: a comparison of Dynamic World, World Cover and Esri Land Cover. Remote Sens. 14, 4101 (2022).

    Article  Google Scholar 

  34. Chytrý, M. et al. Red List of Habitats of the Czech Republic. Ecol. Indic. 106, 105446 (2019).

    Article  Google Scholar 

  35. Bland, L. M. et al. Using multiple lines of evidence to assess the risk of ecosystem collapse. Proc. R. Soc. B 284, 20170660 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nel, J. & Driver, A. National River Ecosystem Accounts for South Africa: Discussion Document for Advancing SEEA Experimental Ecosystem Accounting Project (SANBI, 2015).

  37. Fletcher, M.-S., Hamilton, R., Dressler, W. & Palmer, L. Indigenous knowledge and the shackles of wilderness. Proc. Natl Acad. Sci. USA 118, e2022218118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iglesias, V., Haberle, S. G., Holz, A. & Whitlock, C. Holocene dynamics of temperate rainforests in west-central Patagonia. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00177 (2018).

  39. Burns, E. L. et al. Ecosystem assessment of mountain ash forest in the Central Highlands of Victoria, south-eastern Australia. Austral Ecol. 40, 386–399 (2015).

    Article  Google Scholar 

  40. Murray, N. J., Ma, Z. & Fuller, R. A. Tidal flats of the Yellow Sea: a review of ecosystem status and anthropogenic threats. Austral Ecol. 40, 472–481 (2015).

    Article  Google Scholar 

  41. Schijns, R. & Pauly, D. Management implications of shifting baselines in fish stock assessments. Fish. Manage. Ecol. 29, 183–195 (2022).

    Article  Google Scholar 

  42. Etter, A. et al. Colombian Ecosystems, Threats and Risks: An Application of the Red List of Ecosystems to the Continental Terrestrial Ecosystems (Pontificia Universidad Javeriana and Conservación Internacional-Colombia, 2020).

  43. Murray, N. J. et al. The use of range size to assess risks to biodiversity from stochastic threats. Divers. Distrib. 23, 474–483 (2017).

    Article  Google Scholar 

  44. Czúcz, B. et al. Selection criteria for ecosystem condition indicators. Ecol. Indic. 133, 108376 (2021).

    Article  Google Scholar 

  45. Rowland, J. A. et al. Selecting and applying indicators of ecosystem collapse for risk assessments. Conserv. Biol. 32, 1233–1245 (2018).

    Article  PubMed  Google Scholar 

  46. Jakobsson, S. et al. Introducing the index-based ecological condition assessment framework (IBECA). Ecol. Indic. 124, 107252 (2021).

    Article  Google Scholar 

  47. Bland, L. M. et al. Assessing risks to marine ecosystems with indicators, ecosystem models and experts. Biol. Conserv. 227, 19–28 (2018).

    Article  Google Scholar 

  48. Czúcz, B., Keith, H., Jackson, B., Nicholson, E. & Maes, J. A common typology for ecosystem characteristics and ecosystem condition variables. One Ecosyst. 6, e58218 (2021).

    Article  Google Scholar 

  49. Rowland, J. A. et al. Assessing risk of ecosystem collapse in a changing climate. Preprint at EcoEvoRxiv https://doi.org/10.32942/X2HS4Q (2024).

  50. McNellie, M. J. et al. Reference state and benchmark concepts for better biodiversity conservation in contemporary ecosystems. Glob. Change Biol. 26, 6702–6714 (2020).

    Article  Google Scholar 

  51. Bland, L. M. et al. Developing a standardized definition of ecosystem collapse for risk assessment. Front. Ecol. Environ. 16, 29–36 (2018).

    Article  Google Scholar 

  52. Rowland, J. A., Bland, L. M., James, S. & Nicholson, E. A guide to representing variability and uncertainty in biodiversity indicators. Conserv. Biol. 35, 1669–1682 (2021).

    Article  PubMed  Google Scholar 

  53. Regan, H. M., Colyvan, M. & Burgman, M. A. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecol. Appl. 12, 618–628 (2002).

    Article  Google Scholar 

  54. Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Keith, D. A. et al. The IUCN red list of ecosystems: motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).

    Article  Google Scholar 

  56. Driver, A. et al. National Spatial Biodiversity Assessment 2004: Priorities for Biodiversity Conservation in South Africa (South African National Biodiversity Institute, 2005).

  57. Driver, A. et al. National Biodiversity Assessment 2011: An Assessment of South Africa’s Biodiversity and Ecosystems—Synthesis Report (South African National Biodiversity Institute and Department of Environmental Affairs, 2012).

  58. Natural Capital 1: Land and Terrestrial Ecosystem Accounts, 1990 to 2014 (Statistics South Africa, 2020).

  59. Van Niekerk, L., Taljaard, S., Adams, J., Lamberth, S. & Weerts, S. Experimental Ecosystem Accounts for South Africa’s Estuaries: Extent, Condition and Ecosystem Services Accounts Report No. CSIR/SPLA/SECO/IR/2020/0026/A (Council for Scientific and Industrial Research (CSIR), 2020).

  60. Dayaram, A. et al. The South African National Ecosystem Classification System Handbook 1st edn (South African National Biodiversity Institute, 2021).

  61. Millar, S. & Dickey-Collas, M. Report on IUCN Assessments and Fisheries Management Approaches ICES CM 2018/ACOM:60 (ICES, 2018).

  62. Harris, J. B. C. et al. Conserving imperiled species: a comparison of the IUCN Red List and US Endangered Species Act. Conserv. Lett. 5, 64–72 (2012).

    Article  Google Scholar 

  63. Lai, T.-Y. et al. Bridging the gap between ecosystem service indicators and ecosystem accounting in Finland. Ecol. Modell. 377, 51–65 (2018).

    Article  Google Scholar 

  64. Maes, J. et al. A review of ecosystem condition accounts: lessons learned and options for further development. One Ecosyst. 5, e53485 (2020).

    Article  Google Scholar 

  65. Rieb, J. T. et al. When, where, and how nature matters for ecosystem services: challenges for the next generation of ecosystem service models. BioScience 67, 820–833 (2017).

    Article  Google Scholar 

  66. Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).

    Article  PubMed  Google Scholar 

  67. Alaniz, A. J., Pérez-Quezada, J. F., Galleguillos, M., Vásquez, A. E. & Keith, D. A. Operationalizing the IUCN Red List of Ecosystems in public policy. Conserv. Lett. 12, e12665 (2019).

    Article  Google Scholar 

  68. Valderrábano, M. et al. Using Ecosystem Risk Assessment Science in Ecosystem Restoration: A Guide to Applying the Red List of Ecosystems to Ecosystem Restoration (IUCN, 2021).

  69. Recommendations of the Taskforce on Nature-Related Financial Disclosures (TNFD) v.1.0 (TNFD, 2023).

  70. Science-Based Targets for Nature, Initial Guidance for Business (SBTN, 2020).

  71. Uribe, E. S., Luna-Acosta, A. & Etter, A. Red List of Ecosystems: risk assessment of coral ecosystems in the Colombian Caribbean. Ocean Coast. Manage. 199, 105416 (2021).

    Article  Google Scholar 

  72. Obura, D. et al. Vulnerability to collapse of coral reef ecosystems in the Western Indian Ocean. Nat. Sustain. 5, 104–113 (2021).

    Article  Google Scholar 

  73. Carré, A. et al. Dynamiques Spatiales des Écosystèmes Terrestres, Cotiers et Marins de Madagascar: Une Première Application des Critères de la Liste Rouge des Écosystèmes de l’UICN (IUCN, 2020).

  74. National Environment Management Authority. Uganda Spatial Biodiversity Assessment v.1 (CONNECT Project, 2020).

  75. CONNECT Project Ghana Spatial Biodiversity Assessment v.2 (National Biosafety Authority and the Council for Scientific and Industrial Research, 2021).

  76. Lindgaard, A. & Henriksen, S. The 2011 Norwegian Red List for Ecosystems and Habitat Types (Norwegian Biodiversity Information Centre, 2011).

  77. Kyrkjeeide, M. O. et al. Bending the curve: operationalizing national Red Lists to customize conservation actions to reduce extinction risk. Biol. Conserv. 261, 109227 (2021).

    Article  Google Scholar 

  78. Murray, N. J. et al. Threatened Ecosystems of Myanmar: An IUCN Red List of Ecosystems Assessment v.1.0 (Wildlife Conservation Society, 2020).

  79. United Nations Policy Scenario Analysis Using SEEA Ecosystem Accounting (UN Department of Economic and Social Development and UN Environment Programme, 2021).

  80. Annual Report Parks Victoria (Victoria State Government, 2020).

  81. Dvarskas, A. Experimental ecosystem accounting for coastal and marine areas: a pilot application of the SEEA-EEA in Long Island coastal bays. Mar. Policy 100, 141–151 (2019).

    Article  Google Scholar 

  82. Murray, N. J. et al. Myanmar's terrestrial ecosystems: status, threats and conservation opportunities. Biol. Conserv. 252, 108834 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the following funding bodies: the Australian Research Council (grant no. FT190100234 to E.N.; grant no. LP170101143 to E.N. and D.A.K.), Veski and the Office of the Chief Scientist of Victoria (grant no. IWF01 to E.N.), and funding provided to the IUCN by the MAVA Foundation (to E.N.). We thank J. Nel and A. Skowno for discussions, figures and contributions to the work highlighted in the South Africa case study, and we acknowledge reviews from B. Czúcz and T. Parkhurst.

Author information

Authors and Affiliations

Authors

Contributions

H.X., E.N. and A.D. conceptualized and led the writing of the paper. H.X., M.J.T., A.E. and E.N. contributed to the quantitative analyses. H.X., A.D., A.E., D.A.K., C.O., M.J.T. and E.N. contributed to the discussion, drafting and writing.

Corresponding author

Correspondence to Emily Nicholson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Cara Nelson, Alessandra La Notte, Catherine Farrell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 IUCN Global Ecosystem Typology as a foundation for RLE and EA.

The IUCN Global Ecosystem Typology is a comprehensive and hierarchical classification system, which covers all realms (marine, terrestrial, subterranean, and freshwater), including those shaped primarily by natural and anthropogenic drivers. It addresses functional drivers at the upper levels (realm, biome, and ecosystem functional group), and compositional features at lower levels (global or local ecosystem types)27. Both RLE assessments and ecosystem accounts are typically done at the lower levels, using ecosystem type classifications of varying thematic resolution—for example, level 4 for global or regional assessments (for example RLE of Western Indian Ocean), or level 5 or 6 for national scale assessments18 (for example Norway and South Africa), though results may be aggregated to higher levels for ease of presentation of broad patterns (for example, reporting number of threatened ecosystems or total extent at level 3)18. The typology is a conceptual framework, not a mapping tool, although it provides indicative maps of ecosystem functional groups, which will be iteratively updated as methods and data progress. The typology allows integration of existing national classifications and maps, through cross-walks to the ecosystem functional group level, and can support the development of new finer-scale ecosystem classifications at the country level (for example in Myanmar82). The typology enables comparisons between jurisdictions and parts of the world29. The typology is hierarchical, with higher levels (1–3) capturing ecosystem functional traits, and lower levels (4–6) addressing composition. Levels 4 and 5 represent alternative pathways to comparable descriptions of the world’s ecosystems that capture both function and composition. Level 4 (green) is a top-down approach, whereby ecosystem function groups are split to represent biogeographic compositional patterns, for example using ecoregions as a proxy. Alternatively, local composition may be captured through bottom-up aggregation of local ecosystem types (red), for example, a national classification, using hypothetical terrestrial ecosystem types in ecosystem functional group T3.2 Seasonally dry temperate heath and shrublands.

Supplementary information

Supplementary Information

Supplementary glossary, methods and results.

Supplementary Data 1

Results of the RLE assessment of Colombia’s terrestrial ecosystems, and its use in developing ecosystem extent and condition accounts.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Driver, A., Etter, A. et al. Synergies and complementarities between ecosystem accounting and the Red List of Ecosystems. Nat Ecol Evol 8, 1794–1803 (2024). https://doi.org/10.1038/s41559-024-02494-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02494-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing