Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temperature and biodiversity influence community stability differently in birds and fishes

Abstract

Determining the factors that affect community stability is crucial to understanding the maintenance of biodiversity and ecosystem functioning in the face of global warming. We investigated how four temperature components (that is, median, variability, trend and extremes) affected diversity–synchrony–stability relationships for 1,246 bird and 580 fish communities from temperate regions. We hypothesized a stabilizing effect on the community if the variation in species’ response to changing median temperature decreases overall community synchrony (hypothesis H1) and if temperature extremes reduce interspecific synchrony at extreme abundances due to variation in species’ thermal tolerance limits (hypothesis H2). We found support for H1 in fish and for H2 in bird communities. Here we showed that the abiotic components (that is, the median, variability, trend and extremes of temperature) had more indirect effects on community stability, predominantly by affecting the biotic components (that is, diversity, synchrony). Considering various temperature components’ direct as well as indirect impacts on stability for terrestrial versus aquatic communities will improve our mechanistic understanding of biodiversity change in response to global climatic stressors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual figure showing two mechanistic hypotheses (H1 and H2) to understand the effect of changing temperature on community stability via impacts on species collective response (that is, synchrony).
Fig. 2: Model used to explore the impacts of diversity, synchrony and TCs on community stability.
Fig. 3: Results from piecewise structural equation modelling.
Fig. 4: Confirmation of hypothesis H1 for fish communities.
Fig. 5: Confirmation of Hypothesis H2.

Similar content being viewed by others

Data availability

All data are openly accessible. Specifically, we used three publicly available databases: (1) community abundance time series data from Project BioDyn29 (https://doi.org/10.5281/zenodo.8233591), (2) temperature time series data from CHELSA30,31 database (https://chelsa-climate.org/) and (3) species’ global occurrence data from GBIF database (https://www.gbif.org/). The minimum dataset required to interpret, verify and extend the research in the manuscript is also available via Zenodo at https://doi.org/10.5281/zenodo.12654292 (ref. 67). Source data are provided with this paper.

Code availability

Codes written in R-programming language are available via Zenodo at https://doi.org/10.5281/zenodo.12654292 (ref. 67).

References

  1. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Waldock, C., Dornelas, M. & Bates, A. E. Temperature-driven biodiversity change: disentangling space and time. Bioscience 68, 873–884 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).

    Article  PubMed  Google Scholar 

  4. Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    Article  PubMed  CAS  Google Scholar 

  5. Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).

    Article  Google Scholar 

  6. Knouft, J. H. & Ficklin, D. L. The potential impacts of climate change on biodiversity in flowing freshwater systems. Annu. Rev. Ecol. Evol. Syst. 48, 111–133 (2017).

    Article  Google Scholar 

  7. Barbarossa, V. et al. Threats of global warming to the world’s freshwater fishes. Nat. Commun. 12, 1701 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl Acad. Sci. USA 117, 30882–30891 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. Biol. Sci. 281, 20132612 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. Dee, L. E., Okamtoto, D., Gårdmark, A., Montoya, J. M. & Miller, S. J. Temperature variability alters the stability and thresholds for collapse of interacting species. Phil. Trans. R. Soc. Lond. B 375, 20190457 (2020).

    Article  Google Scholar 

  12. Hammill, E. & Dart, R. Contributions of mean temperature and temperature variation to population stability and community diversity. Ecol. Evol. 12, e8665 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Heron, S. F., Maynard, J. A., van Hooidonk, R. & Mark Eakin, C. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Phil. Trans. R. Soc. Lond. B 372, 20160135 (2017).

    Article  Google Scholar 

  15. Woolway, R. I. et al. Lake heatwaves under climate change. Nature 589, 402–407 (2021).

    Article  PubMed  CAS  Google Scholar 

  16. Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. Naeem, S., Bunker, D. E., Hector, A., Loreau, M. & Perrings, C. Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (OUP, 2009).

  18. Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).

    Article  PubMed  Google Scholar 

  19. De Boeck, H. J. et al. Patterns and drivers of biodiversity–stability relationships under climate extremes. J. Ecol. 106, 890–902 (2018).

    Article  Google Scholar 

  20. Ma, Z. et al. Climate warming reduces the temporal stability of plant community biomass production. Nat. Commun. 8, 15378 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Larsen, S. et al. Climatic effects on the synchrony and stability of temperate headwater invertebrates over four decades. Glob. Chang. Biol. 30, e17017 (2024).

    Article  PubMed  Google Scholar 

  22. Ghosh, S. et al. Synchrony and tail-dependent synchrony have different effects on the stability of terrestrial and freshwater communities. Preprint at Authorea https://doi.org/10.22541/au.169287307.74379399/v1 (2023).

  23. Lovell, R. S. L., Collins, S., Martin, S. H., Pigot, A. L. & Phillimore, A. B. Space-for-time substitutions in climate change ecology and evolution. Biol. Rev. Camb. Philos. Soc. 98, 2243–2270 (2023).

    Article  PubMed  Google Scholar 

  24. Ross, S. R. P.-J., Petchey, O. L., Sasaki, T. & Armitage, D. W. How to measure response diversity. Methods Ecol. Evol. 14, 1150–1167 (2023).

    Article  Google Scholar 

  25. Bragazza, L. A climatic threshold triggers the die-off of peat mosses during an extreme heat wave. Glob. Chang. Biol. 14, 2688–2695 (2008).

    Article  Google Scholar 

  26. Interlandi, S. J. & Kilham, S. S. Limiting resources and the regulation of diversity in phytoplankton communities. Ecology 82, 1270–1282 (2001).

    Article  Google Scholar 

  27. Ghosh, S., Sheppard, L. W., Reid, P. C. & Reuman, D. A new approach to interspecific synchrony in population ecology using tail association. Ecol. Evol. 10, 12764–12776 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

  29. Ghosh, S. et al. Project BioDyn: compilation of long-term (>20yrs) community timeseries data from terrestrial and freshwater realms. Zenodo https://doi.org/10.5281/zenodo.8233591 (2023).

  30. Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Karger, D. N. et al. Data from: climatologies at high resolution for the earth’s land surface areas. Dryad https://doi.org/10.5061/dryad.kd1d4 (2017).

  32. Hiddink, J. G. & Ter Hofstede, R. Climate induced increases in species richness of marine fishes. Glob. Chang. Biol. 14, 453–460 (2008).

    Article  Google Scholar 

  33. Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  35. Fontana, S., Thomas, M. K., Reyes, M. & Pomati, F. Light limitation increases multidimensional trait evenness in phytoplankton populations. ISME J. 13, 1159–1167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Attinello, K., Fahrig, L., Smith, A. C. & Wilson, S. Substituting space for time: bird responses to forest loss in space provide a general picture of responses over time. Ecol. Appl. 34, e2919 (2024).

    Article  PubMed  Google Scholar 

  37. Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. La Sorte, F. A., Lee, T. M., Wilman, H. & Jetz, W. Disparities between observed and predicted impacts of climate change on winter bird assemblages. Proc. Biol. Sci. 276, 3167–3174 (2009).

    PubMed  PubMed Central  Google Scholar 

  39. Gaüzère, P. & Devictor, V. Mismatches between birds’ spatial and temporal dynamics reflect their delayed response to global changes. Oikos 130, 1284–1296 (2021).

    Article  Google Scholar 

  40. Kuczynski, L., Ontiveros, V. J. & Hillebrand, H. Biodiversity time series are biased towards increasing species richness in changing environments. Nat. Ecol. Evol. 7, 994–1001 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Johnson, T. F. et al. Revealing uncertainty in the status of biodiversity change. Nature 628, 788–794 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kendall, W. L., Peterjohn, B. G. & Sauer, J. R. First-time observer effects in the North American Breeding Bird Survey. Auk 113, 823–829 (1996).

    Article  Google Scholar 

  43. Dean, M. J., Hoffman, W. S., Buchan, N. C., Cadrin, S. X. & Grabowski, J. H. The influence of trawl efficiency assumptions on survey-based population metrics. ICES J. Mar. Sci. 78, 2858–2874 (2021).

    Article  Google Scholar 

  44. Huse, I., Gundersen, A. C. & Nedreaas, K. H. Relative selectivity of Greenland halibut (Reinhardtius hippoglossoides, Walbaum) by trawls, longlines and gillnets. Fish. Res. 44, 75–93 (1999).

    Article  Google Scholar 

  45. Auger-Méthé, M. et al. A guide to state–space modeling of ecological time series. Ecol. Monogr. 91, e01470 (2021).

    Article  Google Scholar 

  46. Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).

    Article  PubMed  Google Scholar 

  47. Dowd, W. W., King, F. A. & Denny, M. W. Thermal variation, thermal extremes and the physiological performance of individuals. J. Exp. Biol. 218, 1956–1967 (2015).

    Article  PubMed  Google Scholar 

  48. Wenda, C. et al. Heat tolerance variation reveals vulnerability of tropical herbivore–parasitoid interactions to climate change. Ecol. Lett. 26, 278–290 (2023).

    Article  PubMed  Google Scholar 

  49. Åkesson, A. et al. The importance of species interactions in eco-evolutionary community dynamics under climate change. Nat. Commun. 12, 4759 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. van Moorsel, S. J. et al. Predicting effects of multiple interacting global change drivers across trophic levels. Glob. Chang. Biol. 29, 1223–1238 (2023).

  51. Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).

    Article  PubMed  CAS  Google Scholar 

  52. Pardieck, K. L., Ziolkowski, D. J., Lutmerding, M. & Aponte, V. I. North American Breeding Bird Survey Dataset 1966–2019: US Geological Survey data release. USGS https://doi.org/10.5066/P9J6QUF6 (2020).

  53. Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Comte, L. et al. RivFishTIME: a global database of fish time-series to study global change ecology in riverine systems. Glob. Ecol. Biogeogr. 30, 38–50 (2021).

    Article  Google Scholar 

  55. Lisner, A., Konečná, M., Blažek, P. & Lepš, J. Community biomass is driven by dominants and their characteristics—the insight from a field biodiversity experiment with realistic species loss scenario. J. Ecol. 111, 240–250 (2023).

    Article  Google Scholar 

  56. Sasaki, T. & Lauenroth, W. K. Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 166, 761–768 (2011).

    Article  PubMed  Google Scholar 

  57. Smith, B. & Wilson, J. B. A consumer’s guide to evenness indices. Oikos 76, 70–82 (1996).

    Article  Google Scholar 

  58. Pavoine, S. adiv: an r package to analyse biodiversity in ecology. Methods Ecol. Evol. 11, 1106–1112 (2020).

    Article  Google Scholar 

  59. Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008).

  60. Nelsen, R. B. An Introduction to Copulas (Springer Science & Business Media, 2007).

  61. Ghosh, S. et al. Copulas and their potential for ecology. Adv. Ecol. Res. 62, 409–468 (2020).

    Article  Google Scholar 

  62. Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Chang. 11, 689–695 (2021).

    Article  Google Scholar 

  63. Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article  Google Scholar 

  64. Pohlert, T. trend: non-parametric trend tests and change-point detection. R package version 1.1.6. CRAN https://doi.org/10.32614/CRAN.package.trend (2023).

  65. Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Article  Google Scholar 

  66. Trapletti, A. & Hornik, K. tseries: time series analysis and computational finance. R package version 0.10-56. CRAN https://doi.org/10.32614/CRAN.package.tseries (2024).

  67. Ghosh, S., Petchey, O. & Matthews, B. sghosh89/WP2: repository for analysis: temperature and biodiversity influence community stability differently in birds and fishes. Zenodo https://doi.org/10.5281/zenodo.12654292 (2024).

Download references

Acknowledgements

S.G. and O.L.P. were supported by funding from the University of Zurich. B.M. was supported by funding from Eawag, SNF (grant number 310030-207910).

Author information

Authors and Affiliations

Authors

Contributions

S.G., B.M. and O.L.P. conceptualized the study. S.G. was responsible for data curation, formal analysis, investigation, methodology, software, validation, project management and writing the original draft. O.L.P. acquired funding, provided resources and supervised the project. S.G., B.M. and O.L.P. collaboratively worked on reviewing and editing the manuscript.

Corresponding author

Correspondence to Shyamolina Ghosh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Ian Vaughan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Figs. 1–9 and references.

Reporting Summary

Peer Review File

Supplementary Data 1

Source data for supplementary figures.

Source data

Source Data Fig. 2

Statistical source data used for Fig. 2, panels b–f; other panels are schematic diagrams; description is provided within the excel file.

Source Data Fig. 3

Statistical source data used for Fig. 3; description is provided within the excel file.

Source Data Fig. 4

Statistical source data used for Fig. 4; description is provided within the excel file.

Source Data Fig. 5

Statistical source data used for Fig. 5; description is provided within the excel file.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Matthews, B. & Petchey, O.L. Temperature and biodiversity influence community stability differently in birds and fishes. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02493-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing