Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transitions between colour mechanisms affect speciation dynamics and range distributions of birds

Abstract

Several ecogeographical ‘rules’ have been proposed to explain colour variation at broad spatial and phylogenetic scales but these rarely consider whether colours are based on pigments or structural colours. However, mechanism can have profound effects on the function and evolution of colours. Here, we combine geographic information, climate data and colour mechanism at broad phylogenetic (9,409 species) and spatial scales (global) to determine how transitions between pigmentary and structural colours influence speciation dynamics and range distributions in birds. Among structurally coloured species, we find that rapid dispersal into tropical regions drove the accumulation of iridescent species, whereas the build-up of non-iridescent species in the tropics was driven by a combination of dispersal and faster in situ evolution in the tropics. These results could be explained by pleiotropic links between colouration and dispersal behaviour or ecological factors influencing colonization success. These data elucidate geographic patterns of colouration at a global scale and provide testable hypotheses for future work on birds and other animals with structural colours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural colour database assembly.
Fig. 2: Geographic distribution of different forms of structural colouration in birds.
Fig. 3: Ancestral states of different forms of structural colouration in tropical and temperate regions.
Fig. 4: Diversification dynamics are distinct for different forms of structural colouration.

Similar content being viewed by others

Data availability

All data needed to replicate these analyses are available via Dryad at https://doi.org/10.5061/dryad.02v6wwqc0 (ref. 85).

Code availability

All code needed to perform analyses is available via Zenodo at https://doi.org/10.5281/zenodo.11491149 (ref. 67).

References

  1. Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).

    Google Scholar 

  2. Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).

    Google Scholar 

  3. Lawson, A. M. & Weir, J. T. Latitudinal gradients in climatic-niche evolution accelerate trait evolution at high latitudes. Ecol. Lett. 17, 1427–1436 (2014).

    PubMed  Google Scholar 

  4. Weir, J. T. & Wheatcroft, D. A latitudinal gradient in rates of evolution of avian syllable diversity and song length. Proc. R. Soc. Lond. B 278, 1713–1720 (2011).

    Google Scholar 

  5. Quintero, I., Landis, M., Jetz, W. & Morlon, H. The build-up of the present-day tropical diversity of tetrapods. Proc. Natl Acad. Sci. USA 120, e2220672120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Doutrelant, C. et al. Worldwide patterns of bird colouration on islands. Ecol. Lett. 19, 537–545 (2016).

    PubMed  Google Scholar 

  7. Cooney, C. R. et al. Latitudinal gradients in avian colourfulness. Nat. Ecol. Evol. 6, 622–629 (2022).

    PubMed  Google Scholar 

  8. Dalrymple, R. L. et al. Birds, butterflies and flowers in the tropics are not more colourful than those at higher latitudes. Glob. Ecol. Biogeogr. 24, 1424–1432 (2015).

    Google Scholar 

  9. Stournaras, K. E. et al. How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales. New Phytol. 198, 617–629 (2013).

    PubMed  Google Scholar 

  10. Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).

    CAS  PubMed  Google Scholar 

  11. Dunn, P. O., Armenta, J. K. & Whittingham, L. A. Natural and sexual selection act on different axes of variation in avian plumage color. Sci. Adv. 1, e1400155–e1400155 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Bailey, S. Latitudinal gradients in colors and patterns of passerine birds. Condor 80, 372–381 (1978).

    Google Scholar 

  13. Shawkey, M. D. & D’Alba, L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos. Trans. R. Soc. B 372, 20160536 (2017).

    Google Scholar 

  14. Stoddard, M. C. & Prum, R. O. How colorful are birds? Evolution of the avian plumage color gamut. Behav. Ecol. 22, 1042–1052 (2011).

    Google Scholar 

  15. Newton, I. Opticks (Dover, 1704).

  16. Prum, R. O. in Bird Coloration Vol. I (eds Mcgraw, K. J. & Hill, G. E.) 295–353 (Harvard Univ. Press, 2006).

  17. Noh, H. et al. How noniridescent colors are generated by quasi-ordered structures of bird feathers. Adv. Mater. 22, 2871–2880 (2010).

    CAS  PubMed  Google Scholar 

  18. Maia, R., Rubenstein, D. R. & Shawkey, M. D. Key ornamental innovations facilitate diversification in an avian radiation. Proc. Natl Acad. Sci. USA 110, 10687–10692 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gomez, D. & Théry, M. Simultaneous crypsis and conspicuousness in color patterns: comparative analysis of a neotropical rainforest bird community. Am. Nat. 169, S42–S61 (2007).

    PubMed  Google Scholar 

  20. Eliason, C. M. & Shawkey, M. D. Rapid, reversible response of iridescent feather color to ambient humidity. Opt. Express 18, 21284–21292 (2010).

    CAS  PubMed  Google Scholar 

  21. Shawkey, M. D. et al. Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers. Zoology 114, 59–68 (2011).

    PubMed  Google Scholar 

  22. Eliason, C. M. & Shawkey, M. D. Decreased hydrophobicity of iridescent feathers: a potential cost of shiny plumage. J. Exp. Biol. 214, 2157–2163 (2011).

    PubMed  Google Scholar 

  23. Rogalla, S., Patil, A., Dhinojwala, A., Shawkey, M. D. & D’Alba, L. Enhanced photothermal absorption in iridescent feathers. J. R. Soc. Interface 18, 20210252 (2021).

    PubMed  PubMed Central  Google Scholar 

  24. Thomas, D. B. et al. Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds. Proc. R. Soc. Lond. B 281, 20140806 (2014).

  25. Friedman, N. R., Hofmann, C. M., Kondo, B. & Omland, K. E. Correlated evolution of migration and sexual dichromatism in the New World orioles (icterus). Evolution 63, 3269–3274 (2009).

    PubMed  Google Scholar 

  26. Durrer, H. Schillerfarben der vogelfeder als evolutionsproblem. Denkschr. Schweiz. Nat. Forsch. Ges. 91, 1–127 (1977).

    Google Scholar 

  27. Ducrest, A.-L., Keller, L. & Roulin, A. Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol. Evol. 23, 502–510 (2008).

    PubMed  Google Scholar 

  28. Camacho, C., Pérez-Rodríguez, L., Abril-Colón, I., Canal, D. & Potti, J. Plumage colour predicts dispersal propensity in male pied flycatchers. Behav. Ecol. Sociobiol. 72, 2 (2018).

    Google Scholar 

  29. Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    PubMed  Google Scholar 

  30. Dalrymple, R. L. et al. Abiotic and biotic predictors of macroecological patterns in bird and butterfly coloration. Ecol. Monogr. 88, 204–224 (2018).

    Google Scholar 

  31. Griggio, M., Serra, L., Licheri, D., Campomori, C. & Pilastro, A. Moult speed affects structural feather ornaments in the blue tit. J. Evol. Biol. 22, 782–792 (2009).

    CAS  PubMed  Google Scholar 

  32. Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).

    Google Scholar 

  33. Winger, B. M. & Bates, J. M. The tempo of trait divergence in geographic isolation: avian speciation across the Marañon Valley of Peru. Evolution 69, 772–787 (2015).

    PubMed  Google Scholar 

  34. Lucas, A. M. & Stettenheim, P. R. in Avian Anatomy: Integument 341–419 (US Government Printing Office, 1972).

  35. Claramunt, S. & Cracraft, J. A new time tree reveals Earth historys imprint on the evolution of modern birds. Sci. Adv. 1, e1501005 (2015).

  36. Rogalla, S. et al. The evolution of darker wings in seabirds in relation to temperature-dependent flight efficiency. J. R. Soc. Interface 18, 20210236 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shawkey, M. D., Hauber, M. E., Estep, L. K. & Hill, G. E. Evolutionary transitions and mechanisms of matte and iridescent plumage coloration in grackles and allies (Icteridae). J. R. Soc. Interface 3, 777–786 (2006).

    PubMed  PubMed Central  Google Scholar 

  38. Maia, R., D’Alba, L. & Shawkey, M. D. What makes a feather shine? A nanostructural basis for glossy black colours in feathers. Proc. R. Soc. Lond. B 278, 1973–1980 (2011).

    Google Scholar 

  39. Xiao, M., Dhinojwala, A. & Shawkey, M. Nanostructural basis of rainbow-like iridescence in common bronzewing Phaps chalcoptera feathers. Opt. Express 22, 14625–14636 (2014).

    PubMed  Google Scholar 

  40. Rogalla, S., Shawkey, M. D. & D’Alba, L. Thermal effects of plumage coloration. Ibis 164, 933–948 (2022).

    Google Scholar 

  41. Maia, R., Caetano, J. V. O., Bao, S. N. & Macedo, R. H. Iridescent structural colour production in male blue-black grassquit feather barbules: the role of keratin and melanin. J. R. Soc. Interface 6, S203–S211 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Prum, R. O., Torres, R., Williamson, S. & Dyck, J. Coherent light scattering by blue feather barbs. Nature 396, 28–29 (1998).

    CAS  Google Scholar 

  43. Londoño, G. A., Chappell, M. A., Castañeda, M. D. R., Jankowski, J. E. & Robinson, S. K. Basal metabolism in tropical birds: latitude, altitude and the ‘pace of life’. Funct. Ecol. 29, 338–346 (2014).

    Google Scholar 

  44. Sinnott-Armstrong, M. A. et al. Global geographic patterns in the colours and sizes of animal‐dispersed fruits. Glob. Ecol. Biogeogr. 27, 1339–1351 (2018).

    Google Scholar 

  45. Hu, D. et al. A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution. Nat. Commun. 9, 217 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Vinther, J., Briggs, D. E. G., Clarke, J., Mayr, G. & Prum, R. O. Structural coloration in a fossil feather. Biol. Lett. 6, 128–131 (2010).

    PubMed  Google Scholar 

  47. Eliason, C. M. & Clarke, J. A. Cassowary gloss and a novel form of structural color in birds. Sci. Adv. 6, eaba0187 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Eliason, C. M., Maia, R., Parra, J. L. & Shawkey, M. D. Signal evolution and morphological complexity in hummingbirds (Aves: Trochilidae). Evolution 74, 447–458 (2020).

    PubMed  Google Scholar 

  49. Nordén, K. K., Eliason, C. M. & Stoddard, M. C. Evolution of brilliant iridescent feather nanostructures. eLife 10, e71179 (2021).

    PubMed  PubMed Central  Google Scholar 

  50. Eliason, C. M., Maia, R. & Shawkey, M. D. Modular color evolution facilitated by a complex nanostructure in birds. Evolution 69, 357–367 (2015).

    PubMed  Google Scholar 

  51. Jetz, W. W., Thomas, G. H. G. H., Joy, J. B. J. B., Hartmann, K. K. & Mooers, A. O. A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS  PubMed  Google Scholar 

  52. Eliason, C. M. andersen, M. J. & Hackett, S. J. Using historical biogeography models to study color pattern evolution. Syst. Biol. 68, 755–766 (2019).

    PubMed  Google Scholar 

  53. Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. Birds of the World (Cornell Laboratory of Ornithology, 2022).

  54. Durrer, H. in Biology of the Integument Vol. 2 Vertebrates (eds Bereiter-Hahn, J. et al.) 239–247 (Springer, 1986).

  55. Auber, L. The distribution of structural colours and unusual pigments in the class Aves. Ibis 99, 463–476 (1957).

    Google Scholar 

  56. Mcgraw, K. J. in Bird Coloration Vol. 1 (eds Hill, G. E. & Mcgraw, K. J.) 354–398 (Harvard Univ. Press, 2006).

  57. Dyck, J. Structure and light reflection of green feathers of fruit doves (Ptilinopus spp.) and an imperial pigeon (Ducula concinna). Biol. Skr. K. Dan. Vidensk. Selsk. 30, 2–43 (1987).

    Google Scholar 

  58. Dyck, J. Reflectance spectra of plumage areas colored by green feather pigments. Auk 109, 293–301 (1992).

    Google Scholar 

  59. Prum, R. O. R. O., Lafountain, A. M. A. M., Berro, J. J., Stoddard, M. C. M. C. & Frank, H. A. H. A. Molecular diversity, metabolic transformation and evolution of carotenoid feather pigments in cotingas (Aves: Cotingidae). J. Comp. Physiol. B 182, 1095–1116 (2012).

    CAS  PubMed  Google Scholar 

  60. Dyck, J. Winter plumage of the rock ptarmigan: structure of the air-filled barbules and function of the white colour. Dan. Orn. Foren. Tidsskr. 73, 41–58 (1979).

    Google Scholar 

  61. Barrera-Guzmán, A. O., Aleixo, A., Shawkey, M. D. & Weir, J. T. Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird. Proc. Natl Acad. Sci. USA 115, E218–E225 (2018).

    PubMed  Google Scholar 

  62. Dunning, J. et al. How woodcocks produce the most brilliant white plumage patches among the birds. J. R. Soc. Interface 20, 20220920 (2023).

    PubMed  PubMed Central  Google Scholar 

  63. Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20, 1983–1992 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Google Scholar 

  65. Species Distribution Data Request (BirdLife International; accessed 21 March 2018); http://datazone.birdlife.org/species/requestdis

  66. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  67. Eliason, C. et al. Data from: Why there are so many structurally coloured bird species in the tropics? Zenodo 10.5281/zenodo.11491148 (2024).

  68. Vilela, B. & Villalobos, F. letsR: a new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234 (2015).

    Google Scholar 

  69. Read, Q. D. et al. Tropical bird species have less variable body sizes. Biol. Lett. 14, 20170453 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Alves, D. M. C. C., Diniz-Filho, J. A. F. & Villalobos, F. Geographical diversification and the effect of model and data inadequacies: the bat diversity gradient as a case study. Biol. J. Linn. Soc. Lond. 121, 894–906 (2017).

    Google Scholar 

  71. FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).

    Google Scholar 

  72. Goldberg, E. E., Lancaster, L. T. & Ree, R. H. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 60, 451–465 (2011).

    PubMed  Google Scholar 

  73. Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    Google Scholar 

  74. Burleigh, J. G., Kimball, R. T. & Braun, E. L. Building the avian tree of life using a large-scale, sparse supermatrix. Mol. Phylogenet. Evol. 84, 53–63 (2015).

    PubMed  Google Scholar 

  75. Beaulieu, J. M. & O’meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    PubMed  Google Scholar 

  76. Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2011).

    Google Scholar 

  78. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS  PubMed  Google Scholar 

  79. Jackson, D. A. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74, 2204–2214 (1993).

    Google Scholar 

  80. Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).

    PubMed  Google Scholar 

  81. Ho, L. S. T. & Ané, C. A linear-time algorithm for gaussian and non-gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).

    PubMed  Google Scholar 

  82. Shawkey, M. D. & Hill, G. E. Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller’s jay (Cyanocitta stelleri). J. Exp. Biol. 209, 1245–1250 (2006).

    CAS  PubMed  Google Scholar 

  83. Igic, B., D’Alba, L. & Shawkey, M. D. Manakins can produce iridescent and bright feather colours without melanosomes. J. Exp. Biol. 219, 1851–1859 (2016).

    PubMed  Google Scholar 

  84. Ives, A. R. R2s for correlated data: phylogenetic models, LMMs and GLMMs. Syst. Biol. 68, 234–251 (2019).

    PubMed  Google Scholar 

  85. Eliason, C. et al. Transitions between colour mechanisms affect speciation dynamics and range distributions of birds [Dataset]. Dryad https://doi.org/10.5061/dryad.02v6wwqc0 (2024).

Download references

Acknowledgements

We thank J. Bates for fruitful discussions early in the project. M. Nelson and R. Ree provided technical comments that were immensely helpful in conducting the final analyses. We also thank O. Pauwels, P. Kamminga and A. Nackaerts for access to the collections of the RBINS, Naturalis and RMMA, respectively. We thank G. Debruyn with help in collecting data. This work was partially supported by the National Science Foundation (NSF EP-2112468 to C.M.E.), EOARD (FA98655-23-1-7041 to M.D.S. and L.D.), AFOSR (FA9550-18-0-0447 to M.D.S.) and FWO (G007117N and G0E8322N both to M.D.S.).

Author information

Authors and Affiliations

Authors

Contributions

C.M.E. designed the study. C.M.E., M.P.J.N., C.B., E.B., L.D. and M.D.S. collected data. C.M.E. analysed the data and produced figures. C.M.E. wrote the initial manuscript. C.M.E., M.P.J.N., C.B., E.B., L.D. and M.D.S. revised and approved the final manuscript.

Corresponding author

Correspondence to Chad M. Eliason.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Christopher Cooney and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Diversification dynamics are distinct for different forms of structural colouration.

Panels show support for the “structurally coloured dispersers” hypothesis H1 (a), the “tropical transitions” hypothesis H2 (b) and the “structurally coloured speciators” hypothesis H3 (c) for different range overlap cut-offs ordered by decreasing stringency (see Methods for details). Point colours indicate different colouration mechanisms: iridescent structural colour (ISC; purple) and non-iridescent structural colour (NISC; gold). Significant effects indicated with filled circles. See Fig. 4a for model details and Extended Data Fig. 5 for results for alternate phylogenies and species range map grid cell resolutions. Note different y-axis scales for each panel.

Extended Data Fig. 2 Climatic variation explains prevalence of species with structural colour.

Panels show proportion/probability of being ISC (ac) or NISC (df) as a function of climate PC1 (a,d), climate PC2 (b,e), and natural log-transformed body mass in grams (c,f). Lines are drawn from parameters estimated with phylogenetic logistic regression in phyloglm, with non-significant relationships indicated as dashed lines. Climate PC1 (β = 0.05), associated with cooler, drier, more seasonally variable climates, and climate PC2 (β = −0.05), associated with less seasonally variable and hotter climates, were both significant predictors of ISC (a,b), but body size was not (c, pseudo R2 = 0.09). Only climate PC1 (β = −0.03) was a significant predictor of NISC (d, pseudo R2 = 0.07). See Table 2 for statistical details and Supplementary Fig. 3 for results under alternative phylogenies and grid cell resolutions.

Extended Data Fig. 3 Different habitats support different numbers of structurally coloured species.

Bars show number of species with pigment-based colouration (dark blue), iridescent structural colouration (pink), and non-iridescent structural colouration (gold) in different habitats. Numbers to right of bars are proportions of species in that habitat with either form of structural colouration (that is, ISC or NISC). Habitat bars sharing similar superscript letters are not significantly different in proportions of overall numbers of structurally coloured species (two-sided phylogenetic GLM, P < 0.05, phylogenetic signal = 0.026).

Extended Data Fig. 4 Effects of recoding areas on ClaSSE parameter estimates.

Mean parameter estimates (points) and 95% credible intervals (vertical lines) for temperate (ae) and tropical regions (fj) under a 33-parameter ClaSSE model (see Fig. 4a for details). Parameters are dispersal rates (a,f), rates of structural colour gain (b,g), rates of structural colour loss (c,h), speciation rates (d,i), and extinction rates (e,j). Colours correspond to pigment-based colours (PBC; dark blue), iridescent structural colours (ISC; purple) and non-iridescent structural colours (NISC; gold). Similar to recent work studying dispersal and speciation rates across tetrapods5, less stringent cut-offs result in fewer widespread species and, subsequently, higher dispersal rates into tropical regions (Extended Data Fig. 1a). Results are shown for the phylogeny from ref. 51 and a 2º map grid cell resolution.

Supplementary information

Supplementary Information

Supplementary Text 1–3, Figs. 1–5, Tables 1–3 and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliason, C.M., Nicolaï, M.P.J., Bom, C. et al. Transitions between colour mechanisms affect speciation dynamics and range distributions of birds. Nat Ecol Evol 8, 1723–1734 (2024). https://doi.org/10.1038/s41559-024-02487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02487-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing