Abstract
Generalism in resource use is commonly considered a critical driver of population success, species distribution and extinction risk. This idea can be questioned as generalism may be a result rather than the cause of species abundance and range size. We tested these contrasting causal hypotheses focusing on host use in three databases encompassing approximately 44,000 mutualistic (hummingbird–plant), commensalistic (lichen–plant) and parasitic (flea–mammal) interactions in 617 ecological communities across the Americas and Eurasia. Across all interaction types, our analyses indicated that range size and abundance influence the probability of encountering hosts and set the arena for species to express generalism potentials or adapt to new hosts. Hence, our findings support the hypothesis that generalism is a consequence of species ecological success. This highlights the importance of ecological opportunity in driving species characteristics considered key for their survival and conservation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data required to reproduce the results of this study are available via figshare at https://figshare.com/articles/dataset/Data_and_code_for_Hurtado_et_al_2024/26023627 (ref. 60).
Code availability
The code required to reproduce the results of this study is available via figshare at https://figshare.com/articles/dataset/Data_and_code_for_Hurtado_et_al_2024/26023627 (ref. 60).
References
Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).
Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).
Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).
Carscadden, K. A. et al. Niche breadth: causes and consequences for ecology, evolution, and conservation. Q. Rev. Biol. 95, 179–214 (2020).
Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).
Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Evol. Syst. 19, 207–233 (1988).
Schluter, D. The Ecology of Adaptive Radiation (OUP, 2000).
Poisot, T., Bever, J. D., Nemri, A., Thrall, P. H. & Hochberg, M. E. A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. 14, 841–851 (2011).
Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).
Lancaster, L. T. On the macroecological significance of eco-evolutionary dynamics: the range shift–niche breadth hypothesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20210013 (2022).
Song, C., Simmons, B. I., Fortin, M.-J. & Gonzalez, A. Generalism drives abundance: a computational causal discovery approach. PLoS Comput. Biol. 18, e1010302 (2022).
Ravigné, V. et al. Understanding the joint evolution of dispersal and host specialization using phytophagous arthropods as a model group. Biol. Rev. Camb. Philos. Soc. 99, 219–237 (2024).
Fox, L. R. & Morrow, P. A. Specialization: species property or local phenomenon? Science 211, 887–893 (1981).
Vázquez, D. P. et al. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116, 1120–1127 (2007).
Fort, H., Vázquez, D. P. & Lan, B. L. Abundance and generalisation in mutualistic networks: solving the chicken‐and‐egg dilemma. Ecol. Lett. 19, 4–11 (2016).
Johnson, C. N. Species extinction and the relationship between distribution and abundance. Nature 394, 272–274 (1998).
Gaston, K. J. et al. Abundance–occupancy relationships. J. Appl. Ecol. 37, 39–59 (2000).
Poulin, E., Palma, A. T. & Féral, J.-P. Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends Ecol. Evol. 17, 218–222 (2002).
Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford Univ. Press, 2003).
Wilson, R. J., Thomas, C. D., Fox, R., Roy, D. B. & Kunin, W. E. Spatial patterns in species distributions reveal biodiversity change. Nature 432, 393–396 (2004).
Harnik, P. G., Simpson, C. & Payne, J. L. Long-term differences in extinction risk among the seven forms of rarity. Proc. Biol. Sci. 279, 4969–4976 (2012).
Futuyma, D. J. Food plant specialization and environmental predictability in Lepidoptera. Am. Nat. 110, 285–292 (1976).
Devictor, V. et al. Defining and measuring ecological specialization. J. Appl. Ecol. 47, 15–25 (2010).
Dalsgaard, B. et al. The influence of biogeographical and evolutionary histories on morphological trait‐matching and resource specialization in mutualistic hummingbird–plant networks. Funct. Ecol. 35, 1120–1133 (2021).
Cavender‐Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).
Poulin, R., Krasnov, B. R. & Mouillot, D. Host specificity in phylogenetic and geographic space. Trends Parasitol. 27, 355–361 (2011).
Cooper, N. et al. Phylogenetic host specificity and understanding parasite sharing in primates. Ecol. Lett. 15, 1370–1377 (2012).
Calatayud, J. et al. Geography and major host evolutionary transitions shape the resource use of plant parasites. Proc. Natl Acad. Sci. USA 113, 9840–9845 (2016).
Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).
Gómez, J. M., Verdú, M. & Perfectti, F. Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 465, 918–921 (2010).
Galiana, N., Lurgi, M., Montoya, J. M., Araújo, M. B. & Galbraith, E. D. Climate or diet? The importance of biotic interactions in determining species range size. Glob. Ecol. Biogeogr. 32, 1178–1188 (2023).
Galiana, N., Arnoldi, J.-F., Mestre, F., Rozenfeld, A. & Araújo, M. B. Power laws in species’ biotic interaction networks can be inferred from co-occurrence data. Nat. Ecol. Evol. 8, 209–217 (2024).
Jordano, P., Bascompte, J. & Olesen, J. M. Invariant properties in coevolutionary networks of plant–animal interactions. Ecol. Lett. 6, 69–81 (2003).
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S. & Degen, A. A. Trait‐based and phylogenetic associations between parasites and their hosts: a case study with small mammals and fleas in the Palearctic. Oikos 125, 29–38 (2016).
Wilson, E. O. The nature of the taxon cycle in the Melanesian ant fauna. Am. Nat. 95, 169–193 (1961).
Janz, N. & Nylin, S. in Specialization, Speciation, and Radiation: the Evolutionary Biology of Herbivorous Insects (ed. Tilmon, K.) 203–215 (Univ. of California Press, 2005).
Sonne, J. et al. High proportion of smaller ranged hummingbird species coincides with ecological specialization across the Americas. Proc. Biol. Sci. 283, 20152512 (2016).
Braga, M. P. et al. Host use dynamics in a heterogeneous fitness landscape generates oscillations in host range and diversification. Evolution 72, 1773–1783 (2018).
Simmons, B. I. et al. Abundance drives broad patterns of generalisation in plant–hummingbird pollination networks. Oikos 128, 1287–1295 (2019).
Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).
Lamit, L. J. et al. Genotype variation in bark texture drives lichen community assembly across multiple environments. Ecology 96, 960–971 (2015).
Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).
Guimerà, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).
Levin, B. R. & Bull, J. J. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 2, 76–81 (1994).
Bordes, F. & Morand, S. Parasite diversity: an overlooked metric of parasite pressures? Oikos 118, 801–806 (2009).
Rigaud, T., Perrot-Minnot, M.-J. & Brown, M. J. F. Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence. Proc. Biol. Sci. 277, 3693–3702 (2010).
Susi, H., Barrès, B., Vale, P. F. & Laine, A.-L. Co-infection alters population dynamics of infectious disease. Nat. Commun. 6, 5975 (2015).
Calatayud, J., Madrigal-González, J., Gianoli, E., Hortal, J. & Herrero, A. Uneven abundances determine nestedness in climbing plant-host interaction networks. Perspect. Plant Ecol. Evol. Syst. 26, 53–59 (2017).
González-Varo, J. P. & Traveset, A. The labile limits of forbidden interactions. Trends Ecol. Evol. 31, 700–710 (2016).
Lancaster, L. T. Host use diversification during range shifts shapes global variation in Lepidopteran dietary breadth. Nat. Ecol. Evol. 4, 963–969 (2020).
Singer, M. C. & Parmesan, C. Colonizations cause diversification of host preferences: a mechanism explaining increased generalization at range boundaries expanding under climate change. Glob. Change Biol. 27, 3505–3518 (2021).
Agosta, S. J. & Klemens, J. A. Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol. Lett. 11, 1123–1134 (2008).
Muñoz, J., Felicísimo, A. M., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).
Clarke, J. T., Warnock, R. C. M. & Donoghue, P. C. J. Establishing a time-scale for plant evolution. New Phytol. 192, 266–301 (2011).
Calatayud, J. et al. Pleistocene climate change and the formation of regional species pools. Proc. Biol. Sci. 286, 20190291 (2019).
Calatayud, J. et al. Positive associations among rare species and their persistence in ecological assemblages. Nat. Ecol. Evol. 4, 40–45 (2020).
Alzate, A. & Onstein, R. E. Understanding the relationship between dispersal and range size. Ecol. Lett. 25, 2303–2323 (2022).
Hadfield, J. D., Krasnov, B. R., Poulin, R. & Nakagawa, S. A tale of two phylogenies: comparative analyses of ecological interactions. Am. Nat. 183, 174–187 (2014).
Poisot, T. et al. mangal—making ecological network analysis simple. Ecography 39, 384–390 (2016).
Hurtado, P. Data and code for Hurtado et al. 2024—generalism in species interactions is more the consequence than the cause of ecological success. figshare https://doi.org/10.6084/m9.figshare.26023627.v2 (2024).
Llimona, X. & Hladun, N. L. Checklist of the lichens and lichenicolous fungi of the Iberian Peninsula and Balearic Islands. Bocconea 14, 5–581 (2001).
Burgaz, A. R. Bibliografía botánica ibérica, 2016. Líquenes. Bot. Complut. 41, 109–113 (2017).
Burgaz, A. R. Bibliografía botánica ibérica, 2017. Líquenes. Bot. Complut. 42, 181–185 (2018).
Castroviejo, S. Flora Ibérica (Real Jardín Botánico, 1986–2012).
Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
Soria, C. D., Pacifici, M., Di Marco, M., Stephen, S. M. & Rondinini, C. COMBINE: a coalesced mammal database of intrinsic and extrinsic traits. Ecology 102, e03344 (2021).
Jones, K. E. et al. PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).
Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).
Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).
Álvarez-Carretero, S. et al. A species-level timeline of mammal evolution integrating phylogenomic data. Nature 602, 263–267 (2022).
Gaston, K. J. How large is a species’ geographic range? Oikos 61, 434–438 (1991).
Gaston, K. J. Measuring geographic range sizes. Ecography 17, 198–205 (1994).
He, F. & Gaston, K. J. Occupancy‐abundance relationships and sampling scales. Ecography 23, 503–511 (2000).
Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006).
Gaston, K. J. & Fuller, R. A. The sizes of species’ geographic ranges. J. Appl. Ecol. 46, 1–9 (2009).
Letten, A. D. & Cornwell, W. K. Trees, branches and (square) roots: why evolutionary relatedness is not linearly related to functional distance. Methods Ecol. Evol. 6, 439–444 (2015).
Farage, C., Edler, D., Eklöf, A., Rosvall, M. & Pilosof, S. Identifying flow modules in ecological networks using Infomap. Methods Ecol. Evol. 12, 778–786 (2021).
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
Schleuning, M. et al. Ecological, historical and evolutionary determinants of modularity in weighted seed‐dispersal networks. Ecol. Lett. 17, 454–463 (2014).
Pinheiro, J. & Bates, D. nlme: Linear and nonlinear mixed effects models. R package v.3.1-160 (R Core Team, 2022).
Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).
Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).
Legendre, P. Spatial autocorrelation: trouble or new paradigm? Ecology 74, 1659–1673 (1993).
Krasnov, B. R. et al. Phylogenetic signal in module composition and species connectivity in compartmentalized host–parasite networks. Am. Nat. 179, 501–511 (2012).
Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).
Acknowledgements
We thank L. T. Lancaster for constructive comments to improve the manuscript. We also thank R. Bernado, J. L. Cantalapiedra, P. Giordani, C. Gutiérrez-Cánovas, J. Hortal, J. Madrigal-González and S. Magalhães for their valuable comments on the manuscript. We thank G. C. Vega for her assistance with Fig. 3. We acknowledge the support provided by grant no. FJC2020-045923-I (Juan de la Cierva Formación grant from the Spanish Minister of Science and Innovation) to P.H., a Margarita Salas grant from the Spanish Minister of Universities to P.H., UNIPER grant no. PID2020-114851GA-100 (Spanish Minister of Science and Innovation) to J.C. and RARABUN grant no. 2022/00156/001 (Comunidad de Madrid Government) to J.C.
Author information
Authors and Affiliations
Contributions
P.H. and J.C. contributed to the conceptualization, methodology, data analysis, visualization, funding acquisition and writing of the original draft. All authors actively participated in the investigation and data collection, providing valuable contributions, revisions and editing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Ecology & Evolution thanks Hugo Saiz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Results of the structural equation models testing both the pure causative aprioristic model (a, c, and e for hummingbirds, lichens, and fleas, respectively) and the pure consequent model (b, d, and f for hummingbirds, lichens, and fleas, respectively).
The marginal pseudo-R2 for each response variable is depicted using R2 below the respective variable. Arrows indicate the direction of causality for significant paths (yellow and blue for the causative and consequent model, respectively), and arrow width is proportional to the standardized regression coefficient of the path, as denoted by the numerical values on the lines.
Extended Data Fig. 2 Functional trait values of each host type for plants used by hummingbirds (a), mammals used by fleas (b) and plants used by lichens (c).
For plants used by hummingbirds, flower corolla length is depicted (a). For mammals used by fleas, the functional traits are body mass, density, shelter depth, and shelter complexity (b). In the case of plants used by lichens, bark texture and plant habit are the traits depicted (c). Boxplots illustrate the median (central line), the first and third quartiles (bounds of the box), the range within 1.5 times the interquartile range from the quartiles (whiskers), and outliers (points outside the whiskers). The numbers above the boxes indicate the number of species within each module.
Supplementary information
Supplementary Information
Supplementary Figs. 1–7, Sections 1–3 and Tables 1–4.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hurtado, P., Aragón, G., Vicente, M. et al. Generalism in species interactions is more the consequence than the cause of ecological success. Nat Ecol Evol 8, 1602–1611 (2024). https://doi.org/10.1038/s41559-024-02484-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-024-02484-8
This article is cited by
-
Generalism accumulates on the path to success
Nature Ecology & Evolution (2024)