Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolutionary origin of the chordate nervous system revealed by amphioxus developmental trajectories

Abstract

The common ancestor of all vertebrates had a highly sophisticated nervous system, but questions remain about the evolution of vertebrate neural cell types. The amphioxus, a chordate that diverged before the origin of vertebrates, can inform vertebrate evolution. Here we develop and analyse a single-cell RNA-sequencing dataset from seven amphioxus embryo stages to understand chordate cell type evolution and to study vertebrate neural cell type origins. We identified many new amphioxus cell types, including homologues to the vertebrate hypothalamus and neurohypophysis, rooting the evolutionary origin of these structures. On the basis of ancestor–descendant reconstruction of cell trajectories of the amphioxus and other species, we inferred expression dynamics of transcription factor genes throughout embryogenesis and identified three ancient developmental routes forming chordate neurons. We characterized cell specification at the mechanistic level and generated mutant lines to examine the function of five key transcription factors involved in neural specification. Our results show three developmental origins for the vertebrate nervous system: an anterior FoxQ2-dependent mechanism that is deeply conserved in invertebrates, a less-conserved route leading to more posterior neurons in the vertebrate spinal cord and a mechanism for specifying neuromesoderm progenitors that is restricted to chordates. The evolution of neuromesoderm progenitors may have led to a dramatic shift in posterior neural and mesodermal cell fate decisions and the body elongation process in a stem chordate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deep scRNA-seq of amphioxus embryos.
Fig. 2: Single-cell resolution of neurula stage amphioxus neural cell types.
Fig. 3: Reconstruction of amphioxus neural trajectories.
Fig. 4: CNS neuron development across species.
Fig. 5: HyPTh and DiMes neurons in T1 stage Lhx3/4, Msxlx and FoxQ2a mutants.
Fig. 6: scRNA-seq and in situ characterization of Brachyury KO embryos.

Similar content being viewed by others

Data availability

Plasmids, amphioxus lines and polyclonal antibodies generated in this study are available with a completed materials transfer agreement. To facilitate further exploration of this dataset, we have uploaded the data to make it publicly available (https://lifeomics.shinyapps.io/single_cell_atla_app/). Users can visualize integration results for different samples on reduced dimensions and compare gene expression based on cell types annotated in this study. The data generated in this study can be downloaded in raw form from the Genome Sequence Archive hosted by the National Genomics Data Center, China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences, and are publicly accessible at https://ngdc.cncb.ac.cn/gsa under accession number CRA010773. Processed data are available at the Science Data Bank94 at https://www.scidb.cn/en/list under DOI number https://doi.org/10.57760/sciencedb.08801.

Code availability

Publicly available datasets and common, freely available data analysis software packages used in this project are listed in Methods. Python and R codes are freely available at https://github.com/daiyc-zoo/amphioxus_singlecell.

References

  1. Bertrand, S. & Escriva, H. Evolutionary crossroads in developmental biology: amphioxus. Development 138, 4819–4830 (2011).

    CAS  PubMed  Google Scholar 

  2. Garcia-Fernàndez, J. & Benito-Gutiérrez, È. It’s a long way from amphioxus: descendants of the earliest chordate. BioEssays 31, 665–675 (2009).

    PubMed  Google Scholar 

  3. Albuixech-Crespo, B. et al. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biol. 15, e2001573 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. Gattoni, G., Andrews, T. G. R. & Benito-Gutiérrez, È. Restricted proliferation during neurogenesis contributes to regionalisation of the amphioxus nervous system. Front. Neurosci. 16, 812223 (2022).

    PubMed  PubMed Central  Google Scholar 

  5. Tzouanacou, E., Wegener, A., Wymeersch, F. J., Wilson, V. & Nicolas, J.-F. Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev. Cell 17, 365–376 (2009).

    CAS  PubMed  Google Scholar 

  6. Holland, L. Z. & Holland, N. D. Chordate origins of the vertebrate central nervous system. Curr. Opin. Neurobiol. 9, 596–602 (1999).

    CAS  PubMed  Google Scholar 

  7. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Luke, G. N. & Holland, P. W. H. Amphioxus type I keratin cDNA and the evolution of intermediate filament genes. J. Exp. Zool. 285, 50–56 (1999).

    CAS  PubMed  Google Scholar 

  9. Meulemans, D. & Bronner-Fraser, M. The amphioxus SoxB family: implications for the evolution of vertebrate placodes. Int. J. Biol. Sci. 33, 356–364 (2007).

    Google Scholar 

  10. Satoh, G., Wang, Y., Zhang, P. & Satoh, N. Early development of amphioxus nervous system with special reference to segmental cell organization and putative sensory cell precursors: a study based on the expression of pan-neuronal marker gene Hu/elav. J. Exp. Zool. 291, 354–364 (2001).

    CAS  PubMed  Google Scholar 

  11. Holland, P. W. H., Koschorz, B., Holland, L. Z. & Herrmann, B. G. Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications. Development 121, 4283–4291 (1995).

    CAS  PubMed  Google Scholar 

  12. Aldea, D., Leon, A., Bertrand, S. & Escriva, H. Expression of Fox genes in the cephalochordate Branchiostoma lanceolatum. Front. Ecol. Evol. 3, 80 (2015).

    Google Scholar 

  13. Shimeld, S. M. Characterisation of amphioxus HNF-3 genes: conserved expression in the notochord and floor plate. Dev. Biol. 183, 74–85 (1997).

    CAS  PubMed  Google Scholar 

  14. Yu, J.-K. et al. Axial patterning in cephalochordates and the evolution of the organizer. Nature 445, 613–617 (2007).

    CAS  PubMed  Google Scholar 

  15. Wymeersch, F. J. et al. Position-dependent plasticity of distinct progenitor types in the primitive streak. eLife 5, e10042 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Ma, P. et al. Joint profiling of gene expression and chromatin accessibility during amphioxus development at single-cell resolution. Cell Rep. 39, 110979 (2022).

    CAS  PubMed  Google Scholar 

  17. Benito-Gutiérrez, È., Illas, M., Comella, J. X. & Garcia-Fernàndez, J. Outlining the nascent nervous system of Branchiostoma floridae (amphioxus) by the pan-neural marker AmphiElav. Brain Res. Bull. 66, 518–521 (2005).

    PubMed  Google Scholar 

  18. Candiani, S., Castagnola, P., Oliveri, D. & Pestarino, M. Cloning and developmental expression of AmphiBrn1/2/4, a POU III gene in amphioxus. Mech. Dev. 116, 231–234 (2002).

    CAS  PubMed  Google Scholar 

  19. Albuixech-Crespo, B., Herrera-Úbeda, C., Marfany, G., Irimia, M. & Garcia-Fernàndez, J. Origin and evolution of the chordate central nervous system: insights from amphioxus genoarchitecture. Int. J. Dev. Biol. 61, 655–664 (2017).

    PubMed  Google Scholar 

  20. Wang, W. & Lufkin, T. The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev. Biol. 227, 432–449 (2000).

    CAS  PubMed  Google Scholar 

  21. Nilaweera, K. N., Ellis, C., Barrett, P., Mercer, J. G. & Morgan, P. J. Hypothalamic bHLH transcription factors are novel candidates in the regulation of energy balance. Eur. J. Neurosci. 15, 644–650 (2002).

    PubMed  Google Scholar 

  22. Nittoli, V. et al. Characterization of paralogous uncx transcription factor encoding genes in zebrafish. Gene 721, 100011 (2019).

    Google Scholar 

  23. Good, D. J. et al. Hypogonadism and obesity in mice with a targeted deletion of the Nhlh2 gene. Nat. Genet. 15, 397–401 (1997).

    CAS  PubMed  Google Scholar 

  24. Mullen, R. D. et al. Roles of the LHX3 and LHX4 LIM-homeodomain factors in pituitary development. Mol. Cell. Endocrinol. 265–266, 190–195 (2007).

    PubMed  PubMed Central  Google Scholar 

  25. Welcker, J. E. et al. Insm1 controls development of pituitary endocrine cells and requires a SNAG domain for function and for recruitment of histone-modifying factors. Development 140, 4947–4958 (2013).

    CAS  PubMed  Google Scholar 

  26. Raetzman, L. T., Ward, R. & Camper, S. A. Lhx4 and Prop1 are required for cell survival and expansion of the pituitary primordia. Development 129, 4229–4239 (2002).

    CAS  PubMed  Google Scholar 

  27. Morales-Delgado, N. et al. Regionalized differentiation of CRH, TRH, and GHRH peptidergic neurons in the mouse hypothalamus. Brain Struct. Funct. 219, 1083–1111 (2014).

    CAS  PubMed  Google Scholar 

  28. Kumar, U. & Grant, M. in Rehfeld, J. & Bundgaard, J. (Eds.) Cellular Peptide Hormone Synthesis and Secretory Pathways 97–120 (Springer, 2009).

  29. Yamada, K., Emson, P. & Hökfelt, T. Immunohistochemical mapping of nitric oxide synthase in the rat hypothalamus and colocalization with neuropeptides. J. Chem. Neuroanat. 10, 295–316 (1996).

    CAS  PubMed  Google Scholar 

  30. Annona, G. et al. Nitric oxide regulates mouth development in amphioxus. Sci. Rep. 7, 8432 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Fischer, J. A. et al. Calcitonin: regional distribution of the hormone and its binding sites in the human brain and pituitary. Proc. Natl Acad. Sci. USA 78, 7801–7805 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. McGowan, B. M. et al. Relaxin-3 stimulates the hypothalamic–pituitary–gonadal axis. Am. J. Physiol. Endocrinol. Metab. 295, E278–E286 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pelletier, G., Desy, L., Kerkerian, L. & Cote, J. Immunocytochemical localization of neuropeptide Y (NPY) in the human hypothalamus. Cell Tissue Res. 238, 203–205 (1984).

    CAS  PubMed  Google Scholar 

  34. Lin, Y.-T. & Chen, J.-C. Neuropeptide FF modulates neuroendocrine and energy homeostasis through hypothalamic signaling. Chin. J. Physiol. 62, 47–52 (2019).

    CAS  PubMed  Google Scholar 

  35. Madelaine, R. et al. The hypothalamic NPVF circuit modulates ventral raphe activity during nociception. Sci. Rep. 7, 41528 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tarashansky, A. J. et al. Mapping single-cell atlases throughout Metazoa unravels cell type evolution. eLife 10, e66747 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Qiu, C. et al. Systematic reconstruction of cellular trajectories across mouse embryogenesis. Nat. Genet. 54, 328–341 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, D. W. et al. The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. Nat. Commun. 11, 4360 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huisman, C. et al. Single cell transcriptome analysis of developing arcuate nucleus neurons uncovers their key developmental regulators. Nat. Commun. 10, 3696 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Mohammed, H. et al. Single-cell landscape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep. 20, 1215–1228 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Raj, B. et al. Emergence of neuronal diversity during vertebrate brain development. Neuron 108, 1058–1074.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao, C. et al. Comprehensive single-cell transcriptome lineages of a proto-vertebrate. Nature 571, 349–354 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lemaire, L. A., Cao, C., Yoon, P. H., Long, J. & Levine, M. The hypothalamus predates the origin of vertebrates. Sci. Adv. 7, eabf7452 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Yu, J.-K., Holland, N. D. & Holland, L. Z. AmphiFoxQ2, a novel winged helix/forkhead gene, exclusively marks the anterior end of the amphioxus embryo. Dev. Genes Evol. 213, 102–105 (2003).

    CAS  PubMed  Google Scholar 

  46. Arendt, D., Tosches, M. A. & Marlow, H. From nerve net to nerve ring, nerve cord and brain—evolution of the nervous system. Nat. Rev. Neurosci. 17, 61–72 (2016).

    CAS  PubMed  Google Scholar 

  47. Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wagner, D. E. et al. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360, 981–987 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Massri, A. J. et al. Developmental single-cell transcriptomics in the Lytechinus variegatus sea urchin embryo. Development 148, dev198614 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sebé-Pedrós, A. et al. Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-seq. Cell 173, 1520–1534 (2018).

    PubMed  Google Scholar 

  51. Steger, J. et al. Single-cell transcriptomics identifies conserved regulators of neuroglandular lineages. Cell Rep. 40, 111370 (2022).

    CAS  PubMed  Google Scholar 

  52. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Wei, Z., Angerer, R. C. & Angerer, L. M. Direct development of neurons within foregut endoderm of sea urchin embryos. Proc. Natl Acad. Sci. USA 108, 9143–9147 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Marlow, H. et al. Larval body patterning and apical organs are conserved in animal evolution. BMC Biol. 12, 7 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Li, G. et al. Mutagenesis at specific genomic loci of amphioxus Branchiostoma belcheri using TALEN method. J. Genet. Genomics 41, 215–219 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Tsakiridis, A. et al. Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. Development 141, 1209–1221 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin, B. L. & Kimelman, D. Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation. Dev. Cell 22, 223–232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, H. R. et al. Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Dev. Biol. 353, 147–159 (2011).

    CAS  PubMed  Google Scholar 

  59. Holland, L. Z., Holland, N. D. & Schubert, M. Developmental expression of AmphiWnt1, an amphioxus gene in the Wnt1/wingless subfamily. Dev. Genes Evol. 210, 0522–0524 (2000).

    CAS  Google Scholar 

  60. Davis, S. W. et al. β-catenin is required in the neural crest and mesencephalon for pituitary gland organogenesis. BMC Dev. Biol. 16, 16 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Candiani, S., Holland, N. D., Oliveri, D., Parodi, M. & Pestarino, M. Expression of the amphioxus Pit-1 gene (AmphiPOU1F1/Pit-1) exclusively in the developing preoral organ, a putative homolog of the vertebrate adenohypophysis. Brain Res. Bull. 75, 324–330 (2008).

    CAS  PubMed  Google Scholar 

  62. Butts, T., Holland, P. W. H. & Ferrier, D. E. K. Ancient homeobox gene loss and the evolution of chordate brain and pharynx development: deductions from amphioxus gene expression. Proc. R. Soc. B 277, 3381–3389 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Xing, C. et al. Pitx controls amphioxus asymmetric morphogenesis by promoting left-side development and repressing right-side formation. BMC Biol. 19, 166 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Boorman, C. J. & Shimeld, S. M. Pitx homeobox genes in Ciona and amphioxus show left–right asymmetry is a conserved chordate character and define the ascidian adenohypophysis. Evol. Dev. 4, 354–365 (2002).

    CAS  PubMed  Google Scholar 

  65. Ono, H., Koop, D. & Holland, L. Z. Nodal and Hedgehog synergize in gill slit formation during development of the cephalochordate Branchiostoma floridae. Development 145, dev162586 (2018).

    PubMed  Google Scholar 

  66. Stach, T. Minireview: On the homology of the protocoel in Cephalochordata and ‘lower’ Deuterostomia. Acta Zool. 83, 25–31 (2002).

    Google Scholar 

  67. Gattoni, G., Keitley, D., Sawle, A., & Benito-Gutiérrez, E. An ancient gene regulatory network sets the position of the forebrain in chordates. Preprint at bioRxiv https://doi.org/10.1101/2023.03.13.532359 (2023).

  68. Schwaiger, M. et al. An ancestral Wnt–Brachyury feedback loop in axial patterning and recruitment of mesoderm-determining target genes. Nat. Ecol. Evol. 6, 1921–1939 (2022).

    PubMed  Google Scholar 

  69. Moser, G. C. & Gluecksohn-Waelsch, S. Developmental genetics of a recessive allele at the complex T-locus in the mouse. Dev. Biol. 16, 564–576 (1967).

    CAS  PubMed  Google Scholar 

  70. Corbo, J. C., Levine, M. & Zeller, R. W. Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124, 589–602 (1997).

    CAS  PubMed  Google Scholar 

  71. Wilson, V. & Beddington, R. Expression of T protein in the primitive streak is necessary and sufficient for posterior mesoderm movement and somite differentiation. Dev. Biol. 192, 45–58 (1997).

    CAS  PubMed  Google Scholar 

  72. Hudson, C. & Yasuo, H. Neuromesodermal lineage contribution to CNS development in invertebrate and vertebrate chordates. Genes 12, 592 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ishida, T. & Satou, Y. Ascidian embryonic cells with properties of neural-crest cells and neuromesodermal progenitors of vertebrates. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-024-02387-8 (2024).

  74. Yasuo, H. & Satoh, N. Function of vertebrate T gene. Nature 364, 582–583 (1993).

    CAS  PubMed  Google Scholar 

  75. Koch, F. et al. Antagonistic activities of Sox2 and Brachyury control the fate choice of neuro-mesodermal progenitors. Dev. Cell 42, 514–526.e7 (2017).

    CAS  PubMed  Google Scholar 

  76. Morley, R. H. et al. A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proc. Natl Acad. Sci. USA 106, 3829–3834 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Satoh, N., Tagawa, K. & Takahashi, H. How was the notochord born? Evol. Dev. 14, 56–75 (2012).

    CAS  PubMed  Google Scholar 

  78. Takatori, N. et al. Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae. Dev. Genes Evol. 218, 579–590 (2008).

    CAS  PubMed  Google Scholar 

  79. Li, G., Yang, X., Shu, Z., Chen, X. & Wang, Y. Consecutive spawnings of Chinese amphioxus, Branchiostoma belcheri, in captivity. PLoS ONE 7, e50838 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, G., Shu, Z. & Wang, Y. Year-round reproduction and induced spawning of Chinese amphioxus, Branchiostoma belcheri, in laboratory. PLoS ONE 8, e75461 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Carvalho, J. E. et al. An updated staging system for cephalochordate development: one table suits them all. Front. Cell Dev. Biol. 9, 668006 (2021).

    PubMed  PubMed Central  Google Scholar 

  82. Holland, L. Z., Holland, P. W. H., Holland, N. D., Ferraris, J. D. & Palumbi, S. R. in Ferraris, J. D. & Palumbe, S. R. (Eds.) Molecular Zoology: Advances, Strategies, and Protocols 267–282 (J. Wiley, 1996).

  83. Unson, M. D., Holland, N. D. & Faulkner, D. J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119, 1–11 (1994).

    CAS  Google Scholar 

  84. Satoh, N. et al. A preliminary single-cell RNA-seq analysis of embryonic cells that express Brachyury in the amphioxus, Branchiostoma japonicum. Front. Cell Dev. Biol. 9, 696875 (2021).

    PubMed  PubMed Central  Google Scholar 

  85. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  86. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  87. Huang, Z. et al. Three amphioxus reference genomes reveal gene and chromosome evolution of chordates. Proc. Natl Acad. Sci. USA 120, e2201504120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS  PubMed  Google Scholar 

  89. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360, eaar3131 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Zhang, Z. et al. Database resources of the national genomics data center in 2020. Nucleic Acids Res. 48, D24–D33 (2019).

    Google Scholar 

  93. Chen, T. et al. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics Proteomics Bioinformatics 19, 578–583 (2021).

    PubMed  PubMed Central  Google Scholar 

  94. Chengzan, L., Yanfei, H., Jianhui, L. & Lili, Z. ScienceDB: a public multidisciplinary research data repository for eScience. In 2017 IEEE 13th International Conference on e-Science (e-Science) 248–255 (IEEE, 2017); https://doi.org/10.1109/eScience.2017.38

  95. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    CAS  PubMed  Google Scholar 

  96. Paps, J., Holland, P. W. H. & Shimeld, S. M. A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus? Brief. Funct. Genomics 11, 177–186 (2012).

    CAS  PubMed  Google Scholar 

  97. Shimeld, S. M. C2H2 zinc finger genes of the Gli, Zic, KLF, SP, Wilms’ tumour, Huckebein, Snail, Ovo, Spalt, Odd, Blimp-1, Fez and related gene families from Branchiostoma floridae. Dev. Genes Evol. 218, 639–649 (2008).

    CAS  PubMed  Google Scholar 

  98. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Satou, Y. et al. Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations. Genome Biol. 9, R152 (2008).

    PubMed  PubMed Central  Google Scholar 

  100. Satou, Y., Kawashima, T., Shoguchi, E., Nakayama, A. & Satoh, N. An integrated database of the ascidian, Ciona intestinalis: towards functional genomics. Zool. Sci. 22, 837–843 (2005).

    CAS  Google Scholar 

  101. Davidson, P. L. et al. Chromosomal-level genome assembly of the sea urchin Lytechinus variegatus substantially improves functional genomic analyses. Genome Biol. Evol. 12, 1080–1086 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Arshinoff, B. I. et al. Echinobase: leveraging an extant model organism database to build a knowledgebase supporting research on the genomics and biology of echinoderms. Nucleic Acids Res. 50, D970–D979 (2022).

    CAS  PubMed  Google Scholar 

  103. Shen, W.-K. et al. AnimalTFDB 4.0: a comprehensive animal transcription factor database updated with variation and expression annotations. Nucleic Acids Res. 51, D39–D45 (2022).

    PubMed Central  Google Scholar 

  104. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Hoshijima, K. et al. Highly efficient CRISPR–Cas9-based methods for generating deletion mutations and F0 embryos that lack gene function in zebrafish. Dev. Cell 51, 645–657.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Moreno-Mateos, M. A. et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 12, 982–988 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Su, L., Shi, C., Huang, X., Wang, Y. & Li, G. Application of CRISPR/Cas9 nuclease in amphioxus genome editing. Genes 11, 1311 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chang, N. et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23, 465–472 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).

    CAS  PubMed  Google Scholar 

  110. Pergner, J., Vavrova, A., Kozmikova, I. & Kozmik, Z. Molecular fingerprint of amphioxus frontal eye illuminates the evolution of homologous cell types in the chordate retina. Front. Cell Dev. Biol. 8, 705 (2020).

    PubMed  PubMed Central  Google Scholar 

  111. Yu, J. K. S. & Holland, L. Z. Amphioxus whole-mount in situ hybridization. Cold Spring Harb. Protoc. 4, pdb.prot5286 (2009).

    Google Scholar 

  112. Holland, L. Z., Schubert, M., Holland, N. D. & Neuman, T. Evolutionary conservation of the presumptive neural plate markers AmphiSox1/2/3 and AmphiNeurogenin in the invertebrate chordate amphioxus. Dev. Biol. 226, 18–33 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Holland, Y.-J. Luo, T. Lewin and K. Jindrich for advice and feedback on the preliminary dataset, and we thank J. Huang and M. Zhu for advice and recommendations for single-cell platforms and protocols. We thank F. Guo, Q. Zhang and Z. Zhang for feedback on data analysis methods, and we thank D. Chen for helping set up the interactive website for amphioxus single-cell data display. This research was supported by grants from the National Science Foundation of China under grant numbers 32100335 to Y.D.; 32070458, 32270439 and 32061160471 to G. Li; and 82050002 to X.Z. This study was also supported by the Office of China Postdoc Council 2021 Postdoctoral International Exchange Program, Talent-Introduction Program awarded to Y.D. under postdoc number 273565 and the Institute of Zoology Chinese Academy of Sciences Bingzhi Postdoctoral Fellowship Program awarded to Y.D.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Y.D. and G. Li. Sample collection: Y.D., Y.Z., H.L., R.P., H.L. and C.S. Experimental investigation: Y.D., Y.Z., H.L., R.P., Y.C. and J.D. Lhx3/4 and Msxlx gRNA design and relevant in situ analysis: Y.F. and R.P. Maintenance of Brachyury knockout animals: Y.Z. and L.Y. Maintenance of FoxQ2a knockout animals: R.P. Computational analysis: Y.D. Visualization: Y.D. Supervision: G. Li, X.Z., M.L., P.Z., G. Liu and X.W. Data interpretation: Y.D., G. Li, S.S. and X.Z. Writing—original draft: Y.D. Writing—review and editing: Y.D., G. Li, X.Z. and S.S.

Corresponding authors

Correspondence to Sebastian Shimeld, Xuming Zhou or Guang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Jacob Musser, Ulrich Technau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cell filtering and cell cluster identification.

(A) Doublet cells were identified according to described methods. T1 stage data from five replicate samples show that predicted doublet cells are likely to cluster together on the global embedding. (B) Cells with more than 20% reads mapping to the same gene were filtered prior to clustering. T1 stage data show that cells with a high percentage of reads mapped to one gene also have a low total gene count in each cell, suggesting that these cells are likely low-quality. (C) Cells with less than 750 genes identified tend to cluster together on the global embedding. These cells were also removed prior to downstream analysis. (D) All five repeat samples for the T1 stage are shown here, with the percentage of cells from each replicate in each T1 stage cell type depicted in different colors. (E) Developmental timeline indicating stages in this dataset and the Ma et al. dataset16 in different colors. The reference time scale uses timepoints for sample collection recorded for this study. Exact time used for sample collection was not reported in the Ma et al. dataset. However, all terminology used to describe specific developmental stages conform to staging standards in a previous paper81, and we deduced time points for sample collection in the Ma et al. dataset by experience in our lab. Stages under which the embryo is undergoing gastrulation are highlighted in pink. (F) Difference between median gene number detected per cell and cell number per stage between our dataset and the Ma et al. dataset16. Each dot represents one biological sample. The developmental stage that each sample corresponds to is shown on the horizontal axis. B: blastula; G0: early gastrula; G3: early/mid-gastrula (cap-shaped); G4: mid-gastrula (cup-shaped); G5: mid-/late gastrula (vase-shaped); G6: late gastrula (bottle-shaped); N0: early neurula (unsegmented); N1: early neurula (three pairs of somites); N2: early/mid-neurula (four to five somite pairs); N3: early/mid-neurula (six to seven pairs of somites); N4: mid-neurula (eight to nine somite pairs); T1: late neurula (appearance of first pigment spot); L0: early larvae (mouth open).

Extended Data Fig. 2 Cross-species comparison of neural cell types.

(A) Developmental timeline for four chordate species, mouse, zebrafish, tunicate, and amphioxus, showing all scRNA-seq samples used for SAMap analysis. Developmental stage for each sample with corresponding time after fertilization are shown in parallel, with whole-embryo datasets shown in red and vertebrate anterior tissue and hypothalamus tissue-only datasets shown in blue. Gastrula stages for each species are highlighted in pink. (B) Global UMAP of all neural cells from each of the four chordate species projected into the same 2D space in a pairwise manner. Species identity is indicated by color. (C) Homology of pigment cells, motor neurons, and glia-like neurons amongst four chordate species. Cell-cell homologies with mapping scores higher than the three thresholds are displayed, and names of cell clusters of interest are shown. The width of links between cell clusters correspond to mapping score value, with wider links representing higher mapping scores in the same circular layout. (D) Expression of orthologous genes in tunicate and amphioxus scRNA-seq datasets. The orthologous genes displayed are enriched in both tunicate Arx+ pro-aSV neurons and amphioxus HyPTh neurohypophysis-like neurons (T1: 42, 82, 92). (E) Expression of orthologous genes enriched in tunicate coronet cells and amphioxus HyPTh dopamine neurons (T1: 83).

Extended Data Fig. 3 Reconstruction of amphioxus embryogenesis cellular trajectories using transcriptome similarity and scVelo.

(A) Inferred relationships between cell clusters across amphioxus development predicted using transcriptome similarity. Colored rectangles represent “nodes” that correspond to one of the cell cluster annotations defined in Supplementary Table 2. All nodes are linked to at least one line (“edge”) with edge weight above 0.2. Developmental stages were treated as distinct time points, and the stage that each node belongs to is shown at the bottom of the figure, with nodes from the same stage aligned vertically. Node color corresponds to germ layer ancestry in Supplementary Table 2. All edges with weights above 0.2 are shown in color scale. Nodes containing an asterisk (“*”) are neuromesoderm cell clusters while those containing a hash (“#”) are prechordal plate-like cell clusters that co-express endoderm and axial mesoderm marker genes. We assigned an artificial “fertilized egg” cell cluster linked to B stage cell clusters in dotted lines to ensure graph connectivity. (B - D) scVelo results for ectoderm, mesoderm, and endoderm-origin cell types across four developmental stages (N0, N2, N4, and T1), respectively. Key cell cluster identities are shown in the left panel, while the corresponding stages are shown in the right panel. HyPTh, Hypothalamo-Prethalamic primordium; DiMes, Di-Mesencephalic primordium; RhSp, Rhombencephalo-Spinal primordium; CNS, central nervous system; PNS, peripheral nervous system; PGC, primordial germ cell.

Extended Data Fig. 4 Cross-species comparison across all six species.

Similarity of gastrula (G0, G4, N0 stage) amphioxus predicted neural precursors to cell clusters in other species. Cell-cell similarities with mapping scores higher than the three thresholds are displayed, and the name of each cell cluster assigned the highest mapping score in each species is shown. The width of links between cell clusters corresponds to mapping score value, with wider links representing higher mapping scores in the same circular layout. A: anterior/apical; P: posterior/body.

Extended Data Fig. 5 Cross-species comparison of TFs enriched in predicted anterior and posterior neuron precursors.

Expression pattern of several TFs of interest across all six species. Expression of each ortholog in each species is min-max normalized, with its highest expression value in the stages and cell clusters shown here assigned a value of “1” and its lowest value assigned “0”. Genes with empty boxes (for example FoxQ2 in mouse) represent cases where the ortholog is missing or not expressed in any of the cells analyzed in that species. Gene IDs corresponding to each ortholog shown in this figure are listed in Supplementary Table 6. Several early-mid gastrula and mid-late gastrula stages for mouse and sea urchin are omitted in this figure, and for the full expression pattern please refer to Supplementary Fig. 23.

Extended Data Fig. 6 Brachyury double knock-out embryos.

(A) SoxB1c and Bra2 protein location in N2 stage wild type embryos. The same embryo is shown in lateral and dorsal viewpoints with focus on the posterior tailbud. Overlap of SoxB1c (green) and Bra2 (red) is present in the tailbud region (arrow). Scale bar = 20 µm. (B) Expression of SoxB1c and Bra2 in N2 and N4 stage scRNA-seq data in global 2D UMAP. Cells are colored by either SoxB1c or Bra2 expression. Cells with normalized SoxB1c expression above 1 and Bra2 expression above 2 are highlighted in red in the same 2D UMAP. (C, C’) Brachyury protein presence in N0 and N2 stage Brachyury control and KO embryos. Location of Brachyury protein is indicated in red, while DAPI staining is in blue. Wild type Bra2 protein expression is detected in control embryos (C) while Bra2 is not detectable in Brachyury double knockout embryos of the same developmental stage (C’). Both lateral and dorsal view are shown for the same embryo. Scale bar = 20 µm. (D, D’) N2 stage Brachyury control and mutant embryos. Somites are distinguishable in Brachyury control embryos (D). Brachyury double mutants (D’) lack clear somite boundaries and have an enlarged area around the anterior somites. Embryos are shown in lateral and dorsal views. Scale bar = 50 µm. (E) Differences in cell abundance between Brachyury control and double knockout embryos. Cell clusters with significantly decreased abundance in knockout embryos are shown in red, and those with significantly increased abundance in knockout embryos are in blue. (F) Number of differentially expressed genes in all mutant embryo cell clusters compared to control. Genes up-regulated in mutant embryos are shown in red while down-regulated genes are in green. (G) Differential expression of genes in all non-anterior neural ectoderm, neuromesoderm, tailbud mesoderm, and notochord mesoderm cell clusters in Brachyury double knockout embryos compared to control. Genes down-regulated in knockout embryos are shown in green on the left of each panel, and up-regulated genes are shown in red on the right side. Differentially expressed genes shown in Fig. 6c are highlighted.

Extended Data Fig. 7 Summary of key findings.

(A) In T1 stage amphioxus embryos, the anterior-most and posterior-most tips of the CNS (highlighted in photo) follow different developmental trajectories that can be traced back to early gastrula (G0 stage). In early gastrula, TF gene FoxQ2a and Bra2 are key for establishing identity of predicted anterior and posterior neural precursors, respectively. Scale bar = 50 µm. (B) In T1 stage amphioxus embryos, the previously described “hypothalamus-like” region67 is composed of three cell groups including hypothalamus-like neurons (T1: 90, red), neurohypophysis-like neurons (T1: 42, 82, 92, blue), and dopamine neurons (T1: 83, yellow). The amphioxus posterior CNS is made up of a group of neuromesoderm cells (T1: 7, 66, 69, green) first reported in this study. Scale bar = 50 µm. (C) Comparisons between cnidarian, ambulacrarian, and chordate animals at single-cell level provide support for the dual evolutionary origin of the vertebrate CNS46. Anterior marker FoxQ2 expression is conserved in invertebrates only. Chordate-specific cell types include neuromesoderm cells and hypothalamus or hypothalamus-like neurons. A: anterior; P: posterior.

Supplementary information

Supplementary information

Supplementary text and table legends, and Supplementary Figs. 1–25.

Reporting Summary

Peer Review File

Supplementary Data 1

Supplementary Tables 1–8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Zhong, Y., Pan, R. et al. Evolutionary origin of the chordate nervous system revealed by amphioxus developmental trajectories. Nat Ecol Evol 8, 1693–1710 (2024). https://doi.org/10.1038/s41559-024-02469-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02469-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing